ترغب بنشر مسار تعليمي؟ اضغط هنا

تخفيف تسمم البيانات في تصنيف النص مع الخصوصية التفاضلية

Mitigating Data Poisoning in Text Classification with Differential Privacy

338   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نماذج NLP عرضة لهجمات تسمم البيانات.يمكن لنوع واحد من الهجوم زرع الأبعاد في نموذج عن طريق حقن الأمثلة المسمولة في التدريب، مما تسبب في نموذج الضحية لإضاءة مثيلات الاختبار التي تتضمن نمطا محددا.على الرغم من أن الدفاعات موجودة لمواجهة هذه الهجمات، فهي محددة لنوع هجوم أو نمط.في هذه الورقة، نقترح آلية دفاعية عامة من خلال جعل عملية التدريب قوية للتسمم بالهجمات من خلال طرق تشكيل التدرج، بناء على التدريب الخاص بشكل مختلف.نظهر أن طريقتنا فعالة للغاية في التخفيف، أو حتى القضاء على الهجمات التسمم على تصنيف النص، مع تكلفة صغيرة فقط في دقة التنبؤية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعد نماذج معالجة وأمن معالجة اللغة الطبيعية (NLP) مهمة بشكل ملحوظ في تطبيقات العالم الحقيقي. في سياق مهام تصنيف النص، يمكن تصميم أمثلة الخصومة من خلال استبدال الكلمات مع المرادفات تحت بعض القيود الدلالية والمنظمات الأساسية، بحيث يكون نموذج مدرب جيدا سيعطي تنبؤا خاطئا. لذلك، من الأهمية بمكان تطوير تقنيات لتوفير ضمان قوي وقضايا ضد هذه الهجمات. في هذه الورقة، نقترح WordDP لتحقيق متانة مصدقة ضد استبدال الكلمات في تصنيف النص عن طريق الخصوصية التفاضلية (DP). نحدد العلاقة بين موانئ دبي والمودة القومية لأول مرة في المجال النصي واقتراح خوارزمية قائمة على الآلية المفاهيمية التي تعتمد على الآلية لتحقيق القابة رسميا. ونحن نقدم كذلك آلية أسيانية محاكاة عملية لها استنتاج فعال مع متانة معتمدة. نحن لا نقدم فقط اشتقاق تحليلي صارم للحالة المعتمدة ولكن أيضا مقارنة فائدة WordDP أيضا بشكل تجريبي مع خوارزميات الدفاع الحالية. تظهر النتائج أن WordDP تحقق دقة أعلى وأكثر من 30x تحسن كفاءة على آلية متانة حديثة معتمدة في مهام تصنيف النص النموذجي.
غالبا ما يتم استخدام مخصصات Dirichlet الكامنة (LDA)، وهو نموذج موضوع يستخدم على نطاق واسع كأداة أساسية لتحليل النص في التطبيقات المختلفة. ومع ذلك، فإن عملية التدريب لنموذج LDA عادة ما تتطلب بيانات كوربوس نصية ضخمة. من ناحية، قد تعرض هذه البيانات الضخ مة معلومات خاصة في بيانات التدريب، وبالتالي تكبد شواغل الخصوصية الهامة. من ناحية أخرى، قد تتأثر كفاءة التدريب لنموذج LDA، لأن تدريب LDA يحتاج غالبا إلى التعامل مع بيانات كوربوس النص الضخمة. لمعالجة مشكلات الخصوصية في التدريب النموذجي LDA، جمعت بعض الأعمال الحديثة خوارزميات تدريب LDA التي تستند إلى أخذ عينات Gibbs المنهارة (CGS) مع خصوصية تفاضلية. ومع ذلك، فإن هذه الأعمال عادة ما يكون لها ميزانية خصوصية تراكمية عالية بسبب التكرارات الشاسعة في CGS. علاوة على ذلك، فإن هذه الأعمال لديها دائما كفاءة منخفضة بسبب التعامل مع بيانات Corpus النص الضخمة. لتحسين ضمان الخصوصية والكفاءة، نجمع بين طريقة فرعية مع CGS واقتراح خوارزمية تدريب LDA الجديدة مع خصوصية تفاضلية، فرعية LDA. نجد أن التعيين في CGS يحسن بشكل طبيعي الكفاءة أثناء تضخيم الخصوصية. نقترح أداة متري جديدة، وكفاءة - وظيفة الخصوصية، لتقييم تحسينات ضمان الخصوصية والكفاءة. استنادا إلى طريقة فرعية تقليدية، نقترح طريقة عمل قضائية على التكيف لتحسين فائدة النموذج التي تنتجها فرعية LDA عندما تكون النسبة الفرعية صغيرة. نحن نقدم تحليلا شاملا ل Sub-LDA، وتقييم نتائج التجربة تحسيناتها وضمان خصوصيتها.
هجمات الخصومة تغيير تنبؤات نموذج NLP من خلال اضطراب مدخلات وقت الاختبار.ومع ذلك، فمن الأقل تفهم سواء، وكيف يمكن التلاعب بالتنبؤات مع تغييرات صغيرة مخفية في بيانات التدريب.في هذا العمل، نقوم بتطوير هجوم جديد لتسمم البيانات يتيح خصما للسيطرة على تنبؤات النموذج كلما كانت عبارة الزناد المرغوبة موجودة في المدخلات.على سبيل المثال، ندرج 50 أمثلة سامة في مجموعة تدريب طراز المعنويات التي تسبب النموذج يتوقع بشكل متكرر إيجابية كلما كان الإدخال يحتوي على جيمس بوند ".من الأهمية، نحن نقوم بتحرير هذه الأمثلة السامة باستخدام إجراء يستند إلى التدرج حتى لا يذكر عبارة الزناد.نحن نطبق أيضا هجوم السم لدينا على نمذجة اللغة (تشغيل Apple iPhone "يؤدي إلى الأجيال السلبية) والترجمة الآلية (" القهوة المثلجة "التي يتم إساءة فهمها كقهوة ساخنة").نستنتج من خلال اقتراح ثلاثة دفاعات يمكن أن تخفف من هجومنا على بعض التكلفة في دقة التنبؤ أو الشرح البشري الإضافي.
تركز أساليب تصنيف النص الحالية أساسا على مجموعة تسمية ثابتة، في حين أن العديد من التطبيقات في العالم الحقيقي تتطلب تمديد فئات جديدة من الرباعي حيث يزيد عدد العينات لكل علامة. لاستيعاب هذه المتطلبات، نقدم مشكلة جديدة تسمى تصنيف الحبيبات الخشنة إلى الد قيقة، والتي تهدف إلى أداء تصنيف جيد الحبيبات على البيانات المشروحة بشكل خشن. بدلا من طلب التعليقات التوضيحية البشرية المحبوبة الجديدة، فإننا نقوم باختيار الاستفادة من أسماء السطح التسمية باعتبارها الإرشادات البشرية الوحيدة والنسج في نماذج لغوية غنية مدربة مسبقا في استراتيجية الإشراف الضعيفة المتكررة. على وجه التحديد، نقترح أولا صياغة صياغة دقيقة مشروطة على التسمية لتحريك هذه المولدات لمهمتنا. علاوة على ذلك، نركض هدف تنظيمي بناء على قيود العلامات الجميلة الخشنة المستمدة من إعداد مشكلتنا، مما يتيح لنا المزيد من التحسينات على الصيغة السابقة. يستخدم إطار عملنا النماذج الإدارية التي تم ضبطها بشكل جيد لعينة بيانات التدريب الزائفة لتدريب المصنف، و BootStraps على البيانات الحقيقية غير المسبقة لتحسين النموذج. تجارب واسعة دراسات حالة عن مجموعات بيانات عالمية في العالم الحقيقي تثبت أداء فائقا فوق خطوط خطوط تصنيف Sota-Shot-Shot.
يتم تطبيق مصنف النصوص بانتظام على النصوص الشخصية، وترك مستخدمي هذه المصنفين عرضة لخرق الخصوصية.نقترح حلا لتصنيف النص الذي يحفظه الخصوصية التي تعتمد على الشبكات العصبية التنافعية (CNNS) والحساب الآمن متعدد الأحزاب (MPC).تتيح طريقتنا استنتاج تسمية فئة لنص شخصي بهذه الطريقة (1) لا يتعين على مالك النص الشخصي الكشف عن نصها لأي شخص بطريقة غير مشفرة، و (2) مالك النصلا يتعين على المصنف أن يكشف عن المعلمات النموذجية المدربة إلى مالك النص أو أي شخص آخر.لإظهار جدوى بروتوكولنا لتصنيف النص الخاص العملي، نفذناها في Fronten Fresk Framepten المستندة إلى Pytorch، باستخدام مخطط تقاسم سري معروف جيدا في الإعداد الصادق وغير الغريب.نحن نختبر وقت تشغيل مصنف نصي المحفوظ في الخصوصية لدينا، وهو سريع بما يكفي لاستخدامه في الممارسة العملية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا