ترغب بنشر مسار تعليمي؟ اضغط هنا

تجميع موجه نحو المهام للحوارات

Task-Oriented Clustering for Dialogues

641   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن أن تساعد خوارزمية تجميع موثوقة للحوارات الموجهة نحو المهام في تحليل المطور وتحديد مهام الحوار بكفاءة.من الصعب مباشرة تطبيق خوارزميات تجميع النص العادي المسبق للحوارات الموجهة نحو المهام، بسبب الاختلافات الكامنة بينهما، مثل COMERELER، إغفال وتعبير التنوع.في هذه الورقة، نقترح نموذج شبكة حوار تجميع مهمة التجميع للتجميع الموجه في المهام.يجمع النموذج المقترح بين تمثيلات الكلام على دراية السياق والتحويل عبر الحوار عن تجميع الحوارات الموجهة نحو المهام.تستخدم استراتيجية تدريبية تكرارية نهاية لإنهاء تجميع الحوار وتعلم التمثيل بشكل مشترك.تظهر التجارب في ثلاث مجموعات بيانات عامة أن نموذجنا يتفوق بشكل كبير على خطوط أساسية قوية في جميع المقاييس.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

كان هناك تقدم كبير في أبحاث أنظمة الحوار.ومع ذلك، فإن أبحاث أنظمة الحوار في مجال الرعاية الصحية لا تزال في مهدها.في هذه الورقة، نقوم بتحليل الدراسات الحديثة ومخطط لها ثلاثة لبنات بناء نظام حوار موجه نحو المهام في مجال الرعاية الصحية: I) جمع البيانات المحفوظة للحفاظ على الخصوصية؛2) إدارة الحوار المعرفي الطبي؛و 3) التقييمات المراسمة البشرية.تحقيقا لهذه الغاية، نقترح إطارا لتطوير نظام حوار وإظهار النتائج الأولية لتوليد بيانات الحوار المحاكاة عن طريق استخدام المعرفة الخبراء ومصادر الحشد.
تقدم هذه الورقة طريقة تلقائية لتقييم طبيعية توليد اللغة الطبيعية في أنظمة الحوار.في حين تم تقديم هذه المهمة من خلال العمل البشري باهظ الثمن وتستغرق وقتا طويلا، فإننا نقدم هذه المهمة الرواية التابعة لتقييم الطاقة التلقائي للغة الناتجة.من خلال ضبط نموذ ج Bert، تظهر طريقة تقييم الطبيعية المقترحة لدينا نتائج قوية وتتفوق على الأساس: آلات Vector Support، LSTMS ثنائي الاتجاه، ونفرت.بالإضافة إلى ذلك، يتم تحسين أداء سرعة التدريب وتقييم نموذج طبيعي من خلال نقل التعلم من المعرفة اللغوية بالجودة والمعلوماتية.
نقدم إطار جيل الحوار الاصطناعي، Velocidapter، الذي يعالج مشكلة توافر Corpus لفهم الحوار. DEVERSITS VELOCIDAPTER DEDASTS من خلال محاكاة المحادثات الاصطناعية مجال حوار موجه نحو المهام، تتطلب كمية صغيرة من أعمال Bootstrapping لكل مجال جديد. نحن نقيم فعا لية إطار عملنا على DataSet من فهم الحوار الموجهة نحو المهام، MRCWOZ، الذي نحرشه من خلال التخلص من الأسئلة للحصول على فتحات في المطعم وسيارات الأجرة ومجالات الفنادق من مجموعة بيانات MultiWoz 2.2 (Zang et al.، 2020). نحن ندير تجارب ضمن إعداد موارد منخفضة، حيث نقعمنا نموذجا على الفريق، قم بضبطها على بيانات أصلية صغيرة أو على البيانات الاصطناعية الناتجة عن طريق الإطار الخاص بنا. يظهر VeloCidapter تحسينات كبيرة في استخدام Bertbase والمادة المستندة إلى المحولات كطرازات أساسية. نظل كذلك أن الإطار سهل الاستخدام من قبل مستخدمي المبتدئين واختتموا أن Velocidaper يمكن أن يساعد بشكل كبير في التدريب على الحوارات الموجهة نحو المهام، خاصة بالنسبة لمجالات الناشئة المنخفضة الموارد.
اكتسبت النماذج الإدارية لأنظمة الحوار اهتماما كبيرا بسبب النجاح الأخير من RNN والنماذج القائمة على المحولات في مهام مثل الإجابة على الأسئلة والتلخيص. على الرغم من أن مهمة استجابة الحوار ينظر إليها عموما على أنها تسلسل للتسلسل (SEQ2SEQ) المشكلة، فقد و جدت الباحثون في الماضي أنه يمثل تحديا لتدريب أنظمة الحوار باستخدام نماذج SEQ2SEQ القياسية. لذلك، لمساعدة النموذج على تعلم نطق حقيقي وميزات مستوى المحادثة، Sordoni et al. (2015B)، serban et al. (2016) بنية RNN الهرمية المقترحة، التي تم اعتمادها لاحقا من قبل العديد من أنظمة الحوار RNN الأخرى. مع النماذج القائمة على المحولات التي تسيطر على مشاكل SEQ2SeQ مؤخرا، فإن السؤال الطبيعي الذي يجب طرحه هو قابلية مفهوم التسلسل الهرمي في أنظمة الحوار المحول. في هذه الورقة، نقترح إطارا عمليا لترميز المحولات الهرمية وإظهار كيف يمكن تحويل محول قياسي إلى أي ترميز هرمي، بما في ذلك Hred و Hibert مثل النماذج، باستخدام أقنعة اهتمام مصممة خصيصا والترميزات الموضعية. نوضح أن الترميز الهرمي يساعد في تحقيق فهم لغوي أفضل في اللغة الطبيعية للسياق في النماذج القائمة على المحولات لأنظمة الحوار الموجهة نحو المهام من خلال مجموعة واسعة من التجارب.
مزيد من النماذج اللغوية المسبقة للتدريب على البيانات داخل المجال (التدريب المسبق مسبقا، Dapt) أو البيانات ذات الصلة (TAME-APT-APTICTIVE، TAPT) قبل أن تؤدي إلى تحسين أداء المهام المصب.ومع ذلك، في نمذجة الحوار الموجهة نحو المهام، نلاحظ أن مزيد من الامت يازات التدريبية قبل التدريب لا تعزز دائما الأداء في مهمة المصب.نجد أن DIST مفيد في إعداد الموارد المنخفضة، ولكن نظرا لأن حجم بيانات ضبط الرصيف ينمو، يصبح DIST أقل فائدة أو حتى عديمة الفائدة، وتوسيع نطاق حجم بيانات Dapt لا يساعد.من خلال تحليل التشابه التمثيلي، نستنتج أن المزيد من البيانات الخاصة بالضبط بشكل جيد غلة تغيير أكبر في تمثيلات النموذج وبالتالي تقلل من تأثير التهيئة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا