ترغب بنشر مسار تعليمي؟ اضغط هنا

السفر الوقت النصي: نهج مستنير مؤقتا لنظرية العقل

Textual Time Travel: A Temporally Informed Approach to Theory of Mind

329   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يجب أن تكون أنظمة معالجة اللغة الطبيعية مثل وكلاء الحوار قادرة على سبب معتقدات الآخرين ونواياهم ورغباتهم. هذه القدرة، التي تسمى نظرية العقل (توم)، أمر بالغ الأهمية، حيث تتيح نموذج للتنبؤ وتفسير احتياجات المستخدمين بناء على حالاتهم العقلية. يقيم خط الأبحاث الحديث إمكانية توم من النماذج العصبية المعززة بالذاكرة الحالية من خلال الإجابة على السؤال. تؤدي هذه النماذج بشكل سيء على مهام الاعتقاد الكاذبة حيث تختلف المعتقدات عن الواقع، خاصة عندما تحتوي مجموعة البيانات على جمل مشتتة. في هذه الورقة، نقترح نهجا جديدا مستنرا مؤقتا لتحسين قدرة توم النماذج العصبية المعززة بالذاكرة. يتضمن نموذجنا بشعورا حول عقول الكيانات وتتبع حالاتهم العقلية لأنهم يتطورون بمرور الوقت من خلال مرور موسع. ثم يستجيب للاستعلامات من خلال السفر النصي - I.E.، عن طريق الوصول إلى الذاكرة المخزنة لخطوة زمنية سابقة. نقوم بتقييم نموذجنا على TOM Datasets ويجد أن هذا النهج يحسن الأداء، خاصة من خلال تصحيح الحالات الذهنية المتوقعة مطابقة الاعتقاد الخاطئ.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

إن الاندماج المثالي للوكلاء المستقلين في عالم بشري يعني أنهم قادرون على التعاون على الشروط الإنسانية.على وجه الخصوص، تلعب نظرية العقل دورا مهما في الحفاظ على أرضية مشتركة أثناء التعاون البشري والتواصل.لتمكين نظرية العقل النمذجة في التفاعلات الموجزة، نقدم مجموعة بيانات رائعة من المهام التعاونية التي أجرتها أزواج من الموضوعات البشرية في العالم الافتراضي ثلاثي الأبعاد في عالم MINECRAFT.يوفر المعلومات التي تلتقط معتقدات الشركاء في العالم وبعضها البعض كتفاعل تتكشف، مما يجعل فرصا وفرة لدراسة السلوكيات التعاونية البشرية في الاتصالات اللغوية المحددة.كخطوة أولى نحو هدفنا المتمثل في تطوير وكلاء منظمة العفو الدولية المجسدة قادرة على استنتاج حالات الاعتقاد بالشركاء التعاوني في الموقع، ونحن نبني وتقديم النتائج على النماذج الحسابية لعدة نظرية مهام العقل.
لقد جاء الكثير من التقدم المحرز في NLP المعاصر من تمثيلات التعلم، مثل Embeddings Manked Language Model (MLM)، يتحول إلى مشاكل تحديا في مهام التصنيف البسيطة. ولكن كيف يمكننا تحديد وتفسير هذا التأثير؟ نحن نتكيف مع أدوات عامة من نظرية التعلم الحاسوبية ل تناسب الخصائص المحددة لمجموعات البيانات النصية وتقديم طريقة لتقييم التوافق بين التمثيلات والمهام. على الرغم من أن العديد من المهام يمكن حلها بسهولة مع تمثيلات بسيطة من الكلمات (القوس)، فإن القوس لا ضعيف على مهام الاستدلال باللغة الطبيعية الثابت. لأحد هذه المهمة، نجد أن القوس لا يستطيع التمييز بين اللقطات الحقيقية والعشوائية، في حين تظهر تمثيلات الامتيازات المدربة مسبقا تمييزا أكبر بنسبة 72x بين وضع علامات حقيقية وعشوائية من القوس. توفر هذه الطريقة مقياسا معايرة وكمية لصعوبة مهمة NLP القائمة على التصنيف، مما يتيح المقارنات بين التمثيلات دون الحاجة إلى تقييمات تجريبية قد تكون حساسة للتهيئة والفظايات. توفر الطريقة منظورا جديدا على الأنماط الموجودة في مجموعة بيانات ومحاذاة تلك الأنماط مع ملصقات محددة.
نقترح استخدام مهمة مكتملة متعددة الطبق لتقييم تمثيلات مورفوسنيتشية ل Adgeddings Word متعددة اللغات. هذا القرص في التحقيق الكنسي يجعل من السهل استكشاف تمثيلات مورفوسنيتشية، كلاهما بشكل كلي وعلى مستوى الميزات الفردية (على سبيل المثال، النوع الاجتماعي و العدد والحالة)، ويؤدي بشكل طبيعي إلى دراسة كيفية تعامل نماذج اللغة بالميزات المشتركة (على سبيل المثال ، ظواهر الاتفاقية). نوضح هذه المهمة مع بيرت متعددة اللغات (ديفلين وآخرون.، 2018)، تحقيقات تدريبية لسبعة لغات متنوعة من النطباء: الأفريكان، الكرواتية والفنلندية والعبرية والكورية والإسبانية والتركية. من خلال هذا النموذج البسيط ولكن القوي، نتحقق من أن الرصاص متعدد اللغات يتجه العديد من ميزات مورفوستينكتاكيتش في وقت واحد قابل للاستخراج. سنقوم كذلك بتقييم تحقيقات على ست لغات محمولة: العربية والصينية والماراثية والسلوفينية والتغالوغ و Yoruba. يحتوي هذا النمط المرتفع من التحقيق الصفرية على الاستفادة الإضافية للكشف عن الخصائص الشاملة اللغوية نموذج لغة يعترف بأنه مشترك لغات متعددة.
تعرض أمثلة الخصومة نقاط الضعف في نماذج معالجة اللغة الطبيعية (NLP)، ويمكن استخدامها لتقييم وتحسين متواضتهم. عادة ما تكون التقنيات الحالية لتوليد هذه الأمثلة تحركها القواعد المتخذة المحلية غير الملأمة في السياق، وغالبا ما تؤدي إلى مخرجات غير طبيعية وغ ير طبيعية. تقدم هذه الورقة كلير، وهو نموذج توليد مثال لمصدري محوري ينتج مخرجات بطلاقة وحكومية من خلال إجراءات قناع ثم تسلل. بناء Clare على نموذج لغة ملثم مسبقا مسبقا وتعديل المدخلات بطريقة تدرك السياق. نقترح ثلاث اضطرابات سياق، واستبدال وإدراج ودمج، والتي تسمح بتوليد مخرجات أطوال متنوعة. يمكن أن تجمع كلير بمرونة هذه الاضطرابات وتطبيقها في أي موقف في المدخلات، وبالتالي فهي قادرة على مهاجمة نموذج الضحية بشكل أكثر فعالية مع تعديلات أقل. توضح التجارب الواسعة والتقييم البشري أن كلير تتفوق على خطوط الأساس من حيث معدل النجاح الهجوم، والتشابه النصي والطلاقة والنحوية.
نحن نعتبر مهمة ربط حسابات وسائل الاعلام الاجتماعية التي تنتمي إلى المؤلف نفسه في أزياء آلية على أساس المحتوى والبيانات التعريف لتدفقات المستندات المقابلة.نركز على تعلم التضمين الذي يقوم بخرائط عينات ذات حجم متغير من نشاط المستخدم - بدءا من مشاركات وا حدة بأكمله أشهر من النشاط - إلى مساحة متجهية، حيث عينات من نفس خريطة المؤلف إلى النقاط القريبة.لا يتطلب نهجنا بيانات مشروح من البشر لأغراض تدريبية، مما يتيح لنا الاستفادة من كميات كبيرة من محتوى وسائل التواصل الاجتماعي.تتفوق النموذج المقترح على العديد من خطوط الأساس التنافسية بموجب إطار تقييم رواية على غرار بعد معايير الاعتراف المنشأة في مجالات أخرى.إن طريقتنا تحقق دقة ربط عالية، حتى مع عينات صغيرة من الحسابات غير المرجة في وقت التدريب، شرط أساسي للتطبيقات العملية لإطار الارتباط المقترح.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا