ترغب بنشر مسار تعليمي؟ اضغط هنا

كيف تؤثر الضبط الدقيق على هندسة مساحة التضمين: دراسة حالة عن ISOTROPY

How Does Fine-tuning Affect the Geometry of Embedding Space: A Case Study on Isotropy

352   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يتم قبولها على نطاق واسع أن نماذج اللغة المدربة مسبقا بشكل كبير توفر عادة تحسينات الأداء في مهام المصب. ومع ذلك، هناك دراسات محدودة حول الأسباب الكامنة وراء هذه الفعالية، لا سيما من وجهة نظر التغييرات الهيكلية في مساحة التضمين. في محاولة لملء هذه الفجوة، في هذه الورقة، نقوم بتحليل المدى الذي يتغير فيه iSotropy من مساحة التضمين بعد ضبط الدقيقة. نوضح ذلك، على الرغم من أن ISOTROPY هي خاصية هندسية مرغوبة، لا يؤدي الضبط بشكل جيد بالضرورة إلى تحسينات ISOTROPY. علاوة على ذلك، تخضع الهياكل المحلية في تمثيلات الكلمات السياقية المدربة مسبقا (CWRS)، مثل تلك الأنواع أو التردد المميز للترميز، من تغيير هائل أثناء الضبط الجمني. تظهر تجاربنا نموا دراماتيكيا في عدد الاتجاهات الممدودة في مساحة التضمين، والتي، على النقيض من CWRS المدربة مسبقا، تحمل المعرفة اللغوية الأساسية في مساحة التضمين الدقيقة، مما يجعل أساليب تعزيز ISOTROPY الحالية غير فعالة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أثار العمل الحديث مخاوف بشأن القيود المتأصلة للاحتجاج بالنص. في هذه الورقة، نوضح أولا أن الإبلاغ عن التحيز، ميل لا يذكر أن الواضح، هو أحد أسباب هذا القيد، ثم التحقيق في أي مدى يمكن للتدريب المتعدد الوسائط تخفيف هذه المشكلة. لإنجاز هذا، نحن 1) إنشاء م جموعة بيانات اللون (CODA)، مجموعة بيانات من توزيعات الألوان التي طالبي الإنسان 521 كائنات مشتركة؛ 2) استخدم Coda لتحليل ومقارنة توزيع الألوان الموجود في النص، والتوزيع الذي تم التقاطه بواسطة نماذج اللغة، وتصور الإنسان للون؛ و 3) التحقيق في اختلافات الأداء بين النماذج النصية فقط والنماذج متعددة الوسائط على CODA. تظهر نتائجنا أن توزيع الألوان التي يتعافها نموذج اللغة تعاد ترتبط بقوة أكبر بتوزيع غير دقيق موجود في نصا أكثر من الحقيقة الأرضية، مما يدعم الادعاء بأن الإبلاغ عن التحيز يؤثر سلبا على تدريب سلبي ويحد تدريبا بطبيعته على التدريب فقط. ثم نوضح أن النماذج متعددة الوسائط يمكن أن تستفيد من التدريب البصري لتخفيف هذه الآثار، مما يوفر وسيلة واعدة للبحث في المستقبل.
محادثات طبيعية مليئة التدقيق.تحقق هذه الدراسة إذا وتفهم برت وكيفية التنقيس بثلاث تجارب: (1) دراسة سلوكية باستخدام مهمة نهرية، (2) تحليل ل Aregbeddings و (3) تحليل لآلية الاهتمام على التنقيس.توضح الدراسة السلوكية أنه بدون ضبط جيد على البيانات النظافة، لا يعاني بيرت خسارة كبيرة من الأداء عند تقديمها مقارنة بالمدخلات بطلاقة (EXP1).يكشف التحليل على أزواج الجملة الجماعية والجوزاء بطلاقة أن الطبقة الأعمق، كلما زاد مماثلة تمثيلها (EXP2).يشير هذا إلى أن الطبقات العميقة من بيرت تصبح ثابتا نسبيا للتنقيس.نحن نحدد الاهتمام كآلية محتملة يمكن أن تفسر هذه الظاهرة (EXP3).بشكل عام، تشير الدراسة إلى أن بيرت لديه معرفة بنية التنظير.نؤكد على إمكانية استخدام بيرت لفهم الكلام الطبيعي دون إزالة التنظير.
كانت مشكلة تفسير المعرفة المستفادة من قبل اهتمام ذاتي متعدد الأطراف في المحولات واحدة من الأسئلة المركزية في NLP. ومع ذلك، فإن الكثير من العمل يركز بشكل أساسي على النماذج المدربة لمهام UNI-MODAL، على سبيل المثال الترجمة الآلية. في هذه الورقة، نقوم بف حص اهتمامي عن نفسه في محول متعدد الوسائط مدربا لمهمة تقسيم الصور. على وجه الخصوص، نحن نختبر ما إذا كانت الوسيلة متعددة المهام تؤثر على أنماط الاهتمام المستفاد. أظهرت تصوراتنا المتمثلة في اهتمام ذاتي ملثمين أن المعرفة اللغوية العامة للمدخلات النصية، و (2) دمج أنماط اهتمامها من القطع الأثرية من طريقة مرئية على الرغم من أنها لم تصل إليها مباشرة. قارنا أنماط انتباه المحولات لدينا مع الاهتمام الملثمين في DistilGPT-2 تم ​​اختباره لجيلي UNI-MODAL لنص التسميات التوضيحية للصور. بناء على خرائط أوزان الاهتمام المستخرجة، فإننا نجادل بأنه ملثم بالاهتمام الذاتي في محول تقسيم الصور يبدو أنه يعزز مع المعرفة الدلالية من الصور، مماثلة للحصول على معلومات مشتركة بين اللغة والرؤية في أنماط اهتمامها.
في طرازات اللغة عبر اللغات، تعيش تمثيلات للعديد من اللغات المختلفة في نفس المساحة. هنا، نحقق في العوامل اللغوية وغير اللغوية التي تؤثر على محاذاة على مستوى الجملة في نماذج اللغة المحددة مسبقا بين 101 لغة و 5،050 زوج لغة. باستخدام LASTE BERT-القائم عل ى BERT و LASER المستندة إلى BILSTM كنماذجنا، والكتاب المقدس كجورتنا، نحسب مقياسا يستند إلى المهمة لمحاذاة عبر اللغات في شكل أداء استرجاع BiteXT، بالإضافة إلى أربعة تدابير جوهرية لمساحة المتجهات المحاذاة والتزييف. ثم ندرس مجموعة من الميزات اللغوية واللغوية واللغوية والمتعلقة التدريبية كتنبؤ محتمل من مقاييس المحاذاة. تظهر نتائج تحليلاتنا أن اتفاقية ترتيب الكلمات والاتفاق في التعقيد المورفولوجي هي اثنتان من أقوى المتنبئ اللغوي للقلق. نلاحظ أيضا البيانات التدريبية في الأسرة كمؤشر أقوى من بيانات التدريب المحددة باللغة في جميع المجالات. نحن نتحقق من بعض النتائج اللغوية لدينا من خلال النظر في تأثير تجزئة مورفولوجية على محاذاة اللغة الإنجليزية - غير الأجنبية، بالإضافة إلى دراسة تأثير اتفاقية ترتيب الكلمات على ISomorphism ل 66 أزواج لغة الطلقة الصفرية من كائن مختلف. نحن نجعل البيانات والرمز تجاربنا متاحة للجمهور.
بايت زوج ترميز (BPE) هي خوارزمية في كل مكان في عملية تكييف الكلمات الفرعية لنماذج اللغة لأنها توفر فوائد متعددة. ومع ذلك، فإن هذه العملية تستند فقط إلى إحصاءات بيانات ما قبل التدريب، مما يجعل من الصعب على الممتلزمية أن تتعامل مع هجاء نادرة. من ناحية أخرى، على الرغم من أن طراز أخطاء إملائي، إلا أن نماذج على مستوى الطابع النقي غالبا ما تؤدي إلى تسلسل طويل غير معقول وجعل الأمر أكثر صعوبة في تعلم النموذج كلمات ذات معنى. لتخفيف هذه التحديات، نقترح وحدة الكلمات الفرعية القائمة على الطابع (Char2Subword) التي تتعلم جدول تضمين الكلمات الفرعية في النماذج المدربة مسبقا مثل Bert. تقوم وحدة char2subword الخاصة بنا بإنشاء تمثيلات من الشخصيات من المفردات الفرعية، ويمكن استخدامها كإستبدال قطرة من جدول تضمين الكلمات الفرعية. الوحدة النمطية قوية لتعديلات مستوى الأحرف مثل أخطاء إملائي، انعطاف Word، غلاف، علامات الترقيم. نحن ندمجها أكثر مع بيرت من خلال التدريب المسبق مع الحفاظ على معلمات محول بيرت الثابتة - وبالتالي توفير طريقة عملية. أخيرا، نوضح أن دمج الوحدة النمطية الخاصة بنا إلى mbert يحسن بشكل كبير الأداء في معيار التقرير اللغوي لوسائل الإعلام الاجتماعية (LINCE).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا