ترغب بنشر مسار تعليمي؟ اضغط هنا

التدريجي القائم على المحولات من تقارير الأشعة

Progressive Transformer-Based Generation of Radiology Reports

595   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

مستوحاة من تعلم المناهج الدراسية، نقترح إطار جيل التوليد على التوالي (I.E.، إلى نص إلى نص) حيث نقسم مشكلة جيل تقرير الأشعة في خطوتين.عكس ذلك لتوليد تقرير الأشعة الكاملة من الصورة في وقت واحد، يولد النموذج مفاهيم عالمية من الصورة في الخطوة الأولى ثم إصلاحها إلى نصوص أدق ومتماسكة باستخدام الهندسة المعمارية القائمة على المحولات.نحن نتبع نموذج التسلسل المستند إلى التسلسل المحول في كل خطوة.نحن نحسن على أحدث مجموعة من مجموعات البيانات القياسية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف ورقتنا إلى أتمتة توليد التقارير الطبية من مدخلات صور الأشعة السينية الصدر، وهي مهمة حاسمة ولكنها تستغرق وقتا طويلا لأطباء الأشعة. تؤكد جهود توليد التقرير الطبي الحالي التأكيد على تقديم تقارير قابلة للقراءة من قبل الإنسان، ولكن النص الذي تم إنشاؤ ه قد لا يتماشى بشكل جيد إلى الحقائق السريرية. تقاريرنا الطبية الناتجة، من ناحية أخرى، يجيد، والأهم من ذلك، دقيقة سريريا. يتم تحقيق ذلك من خلال النموذج الخاص بنا الممتازة والتنتهي التي تحتوي على ثلاث وحدات تكميلية: أخذ صور الأشعة السينية للصدر وثيقة التاريخ السريري للمرضى كمدخلات، وتنتج وحدة التصنيف الخاصة بنا قائمة مرجعية داخلية للمواضيع المتعلقة بالأمراض، المشار إليها كما تضمين المرض المخصب؛ ثم يتم تمرير تمثيل التضمين إلى مولدنا القائم على المحولات، لإنتاج التقرير الطبي؛ وفي الوقت نفسه، يخلق مولدنا أيضا تمثيلا مضمون مرجح، وهو يتغذى على مترجمينا لضمان الاتساق فيما يتعلق بالمواضيع المتعلقة بالأمراض. توضح التقييمات التجريبية نتائج واعدة للغاية حققتها نهجنا بشأن المقاييس المستخدمة عادة فيما يتعلق بطلاقة اللغة ودقة السريرية. علاوة على ذلك، لاحظت مكاسب الأداء الملحوظة باستمرار عند توفر معلومات الإدخال الإضافية، مثل المستند السريري والمسح الإضافي من وجهات نظر مختلفة.
توفر الشبكات العصبية القائمة على المحولات أداء تصنيف جيد للغاية عبر مجموعة واسعة من المجالات، لكن لا تقدم تفسيرات توقعاتها.في حين أن العديد من طرق التفسير، بما في ذلك الشكل، فإن معالجة مشكلة تفسير نماذج التعلم العميق، لا تتكيف معها للعمل على الشبكات العصبية القائمة على أحدث الأحوال مثل بيرت.مقرر آخر لهذه الطرق هو أن تصور التفسيرات الخاصة بهم في شكل قوائم من الكلمات الأكثر صلة لا يأخذ في الاعتبار الطبيعة المتسلسلة والهيكلية للنص.تقترح هذه الورقة طريقة TransShap التي تتكيف مع النماذج المحول بما في ذلك مصنفات النص المستند إلى BERT.تتقدم تصورات الشكل من خلال إظهار التفسيرات بطريقة متتالية، وتقييمها من قبل المقيمين البشري كمنافسة للحلول الحديثة.
يشير العمل السابق إلى أن معلومات خطاب المعلومات المتعلقة بالتلخيص.في هذه الورقة، نستكشف ما إذا كان هذا التآزر بين الخطاب والتلخيص ثنائي الاتجاه، من خلال استنتاج أشجار الخطاب على مستوى المستند من الملخصات العصبية المدربة مسبقا.على وجه الخصوص، نولد أشج ار خطاب على الطراز الأول غير المسموح به من مصفوفات الانتباه الذاتي لنموذج المحول.تكشف التجارب عبر النماذج ومجموعات البيانات أن الملخصات تتعلم كل من معلومات الخطاب على حد سواء، والاعتماد على نمط الدوائر الانتخابية، والتي يتم ترميزها عادة في رأس واحد، تغطي تبعيات الخطاب طويلا وقصيرا.بشكل عام، تشير النتائج التجريبية إلى أن معلومات الخطاب المستفادة عامة ومباشرة قابلة للتحويل.
مقاييس التقييم التلقائية المستندة إلى المرجعية محدودة بشكل ملحوظ ل NLG بسبب عدم قدرتها على التقاط مجموعة كاملة من النواتج المحتملة.نحن ندرس بديلا للإشارة: تقييم كفاية الرسوم البيانية من جمل اللغة الإنجليزية التي تم إنشاؤها من الرسوم البيانية التمثيل المعنى التجريدي (AMR) عن طريق التحليل في عمرو ومقارنة التحليل مباشرة إلى المدخلات.نجد أن الأخطاء التي أدخلتها تحليل عمرو التلقائي تقيص بشكل كبير من فعالية هذا النهج، ولكن دراسة تحرير يدوية تشير إلى أنه نظرا لأن التحليل يحسن، فإن التقييم القائم على التحلل يحتوي على إمكانية تفوق معظم المقاييس المرجعية.
تقدم هذه الورقة طريقة تلخيص عالمية لتعليقات الرياضة الحية التي لدينا ملخص مكتوب بشري متاح.تستند هذه الطريقة إلى ملخص مولد عصبي.يتم تقييد كمية البيانات المتاحة للتدريب مقارنة بالشريعة المستخدمة عادة من قبل الملخصات العصبية.نقترح لمساعدة الملخص على الت علم من كمية محدودة من البيانات عن طريق الحد من انتروبيا من نصوص الإدخال.يتم تنفيذ هذه الخطوة من خلال تصنيف إلى فئات مستمدة من تحليل مفصل للملخصات التي كتبها الإنسان.نظهر أن الترشيح يساعد نظام التلخيص للتغلب على نقص الموارد.ومع ذلك، ظهرت عدة نقاط تحسين من هذه الدراسة الأولية، والتي نناقشها وتخطط لتنفيذها في العمل في المستقبل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا