ترغب بنشر مسار تعليمي؟ اضغط هنا

جمع مجموعة بيانات BIAS الجنسية على نطاق واسع لحل Aquerence والترجمة الآلية

Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation

486   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

وقد وجدت الأعمال الحديثة دليلا على التحيز بين الجنسين في نماذج من الترجمة الآلية ودقة Aquerence باستخدام مجموعات بيانات التشخيص الاصطناعية في الغالب. في حين أن هذه التحيز الكمي في تجربة خاضعة للرقابة، فإنها غالبا ما تفعل ذلك على نطاق صغير وتتكون في معظمها من الجمل الاصطناعية، خارج التوزيع. في هذا العمل، نجد أنماط نحوية تشير إلى مهام الدورانية النمطية وغير النمطية (مثل الممرضات الإناث مقابل الراقصين الذكور) في كوربورا من ثلاثة مجالات، مما أدى إلى أول مجموعة بيانات BIAS الجنسية على نطاق واسع من 108 ألفا جمل. نحن نتحقق يدويا من جودة Corpus الخاصة بنا واستخدامها لتقييم التحيز بين الجنسين في نماذج تحليل الأسلحة الأساسية المختلفة ونماذج الترجمة الآلية. نجد أن جميع النماذج المختبرة تميل إلى الإفراط في الاعتماد على الصور النمطية الجنسانية عند تقديمها مع المدخلات الطبيعية، والتي قد تكون ضارة بشكل خاص عند نشرها في النظم التجارية. أخيرا، نظيرنا على أن مجموعة بياناتنا تضفي نفسها على نموذج دقة COMEARCASE، ويجد أن يجدد التحيز على مجموعة مشغولة. تتوفر DataSet ونماذجنا علنا ​​في Github.com/slab-nlp/bug. نأمل أن يحفزون البحوث المستقبلية في تقنيات تخفيف تقييم التقييم بين الجنسين في الإعدادات الواقعية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حاليا، تتلقى الترجمة متعددة اللغات الآلية أكثر اهتماما أكثر وأكثر لأنها تجلب أداء أفضل لغات الموارد المنخفضة (LRLS) وتوفر مساحة أكبر. ومع ذلك، فإن نماذج الترجمة متعددة اللغات الحالية تواجه تحديا شديدا: عدم التوازن. نتيجة لذلك، فإن أداء الترجمة من لغا ت مختلفة في نماذج الترجمة متعددة اللغات مختلفة تماما. نقول أن مشكلة الاختلال هذه تنبع من كفاءات التعليم المختلفة لغات مختلفة. لذلك، نحن نركز على تحقيق التوازن بين الكفاءات التعليمية لغات مختلفة واقتراح مناهج التعلم القائم على الكفاءة للترجمة الآلية متعددة اللغات، والتي تسمى CCL-M. على وجه التحديد، نقوم أولا بتحديد كفاءتين للمساعدة في جدولة لغات الموارد العالية (HRLS) ولغات المورد المنخفضة: 1) الكفاءة التي تم تقييمها ذاتيا، وتقييم مدى تعلم اللغة نفسها؛ 2) الكفاءة التي تم تقييمها HRLS، وتقييم ما إذا كانت LRL جاهزة للتعلم وفقا لخلاف HRLS الذي تم تقييمه الذاتي. استنادا إلى الكفاءات المذكورة أعلاه، نستخدم خوارزمية CCL-M المقترحة إضافة لغات جديدة تدريجيا في التدريب المحدد بطريقة تعلم المناهج الدراسية. علاوة على ذلك، نقترح استراتيجية أخذان رصاصة ديناميكية متوازنة من الكفاءة النووية لتحسين عينات التدريب بشكل أفضل في التدريب متعدد اللغات. تظهر النتائج التجريبية أن نهجنا حقق مكاسب أداء ثابتة وهامة مقارنة بالنهج السابق للدولة السابقة بشأن مجموعة بيانات محادثات تيد.
دقة Aqueference Coreference Coreence هي مهمة مؤسسية لتطبيقات NLP التي تنطوي على معالجة النص المتعدد. ومع ذلك، فإن شركة كوربيا الحالية لهذه المهمة نادرة وصغيرة نسبيا، بينما تعلق فقط مجموعات من المستندات المتواضعة فقط من الوثائق التي تنتمي إلى نفس المو ضوع. لاستكمال هذه الموارد وتعزيز البحوث المستقبلية، نقدم حفل الحدث في ويكيبيديا (WEC)، وهي منهجية فعالة لجمع مجموعة بيانات واسعة النطاق لحدث الحدث عبر المستندات من ويكيبيديا، حيث لا يتم تقييد روابط Coreference داخل مواضيع محددة مسبقا. نحن نطبق هذه المنهجية على Wikipedia الإنجليزية واستخراج مجموعة بيانات WEC-ENG الواسعة النطاق. وخاصة، طريقة إنشاء DataSet لدينا عام ويمكن تطبيقها مع القليل من الجهود الأخرى لغات ويكيبيديا الأخرى. لضبط نتائج خط الأساس، نقوم بتطوير خوارزمية تتكيف مع مكونات النماذج الحديثة في دقة COMERACARY داخل الوثيقة إلى إعداد المستندات عبر المستندات. النموذج لدينا هو فعال بشكل مناسب وتفوق النتائج التي تم نشرها سابقا من النتائج التي تم نشرها مسبقا للمهمة.
في هذه الورقة، نقدم مجموعة بيانات جديدة تستند إلى Twitter للكشف عن السيبراني وإساءة استخدام عبر الإنترنت.تضم هذه البيانات التي تضم 62،587 تغريدات، تم الحصول على هذه البيانات من تويتر باستخدام شروط استعلام محددة تهدف إلى استرداد تغريدات مع احتمالات عا لية من أشكال مختلفة من البلطجة والمحتوى المسيء، بما في ذلك الإهانة والتصيد والبهجة والسخرية والتهديد والإباحية والاستبعاد.لقد قامنا بتجنيد مجموعة من 17 ملقاة لأداء التعليق التوضيحي بحبائهم الجميلة على مجموعة بيانات كل تغريدة موضحة بمثابة ثلاثة محنوح.جميع الحناحيين لدينا هي مستخدمي التعليم العالي والمتكرر في المدرسة الثانوية.اتفاقية المشتركة بين الخصوصية لأن مجموعة البيانات التي تقاسها Krippendorff's ألفا هي 0.67.تم تأكيد التحليلات التي أجريتها في مجموعة بيانات الموضوعات الإلكترونية المشتركة التي أبلغت عن دراسات أخرى وكشفت علاقات مثيرة للاهتمام بين الطبقات.تم استخدام DataSet لتدريب عدد من نماذج التعلم العميقة المستندة إلى المحولات التي تعود إلى نتائج مثيرة للإعجاب.
توضح هذه الورقة نهجنا للمهمة المشتركة على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع في المؤتمر السادس حول الترجمة الآلية (WMT-21).في هذا العمل، نهدف إلى بناء نظام ترجمة متعددة اللغات واحدا مع فرضية أن تمثيل عالمي عبر اللغة يؤدي إلى أداء ترجمة متع ددة اللغات بشكل أفضل.نحن نقدم استكشاف أساليب الترجمة الخلفي المختلفة من الترجمة الثنائية إلى الترجمة متعددة اللغات.يتم الحصول على أداء أفضل من خلال طريقة أخذ العينات المقيدة، والتي تختلف عن اكتشاف الترجمة الثنائية الثدية.علاوة على ذلك، نستكشف أيضا تأثير المفردات ومقدار البيانات الاصطناعية.والمثير للدهشة أن الحجم الأصغر من المفردات أداء أفضل، وتقدم بيانات اللغة الإنجليزية النائية واسعة النطاق تحسنا متواضعا.لقد أرسلنا إلى كل من المهام الصغيرة وتحقيق المركز الثاني.
مع استمرار العالم في محاربة جائحة CovID-19، فإنه يقاتل في وقت واحد من نقص الدم "- وهو طوفان من تضليل وانتشار نظريات المؤامرة المؤدية إلى تهديدات صحية وشعبة المجتمع. لمكافحة هذا المعكرية، هناك حاجة ملحة لمجموعات البيانات القياسية التي يمكن أن تساعد ال باحثين على تطوير وتقييم النماذج الموجهة نحو الكشف التلقائي عن التضليل. في حين أن هناك جهودا متزايدة لإنشاء مجموعات بيانات قياسية كافية ومفتوحة للمصدر للغة الإنجليزية، فإن الموارد القابلة للمقارنة غير متاحة تقريبا بالنسبة للألمانية، مما يترك البحث في اللغة الألمانية متخلفة بشكل كبير. في هذه الورقة، نقدم DataSet المعيار الجديد Fang-Covid يتكون من 28،056 مواد إخبارية ألمانية حقيقية و 13،186 مرتبطة بمعائق CovID-19 وكذلك بيانات عن انتشارها على Twitter. علاوة على ذلك، نقترح نموذجا قابل للتفسير القائم على السياق والاجتماعي للكشف عن الأخبار المزيفة، ومقارنة أدائه إلى النماذج والأداء الأسود الميزة لتقييم الأهمية النسبية للميزات القابلة للتفسير البشرية في التمييز بين الأخبار المزيفة من الأخبار الأصلية وبعد

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا