ترغب بنشر مسار تعليمي؟ اضغط هنا

أقل هو أكثر: تكيف المجال مع تذكرة اليانصيب لفهم القراءة

Less Is More: Domain Adaptation with Lottery Ticket for Reading Comprehension

407   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نقترح نموذجا بسيطا للتكيف عن نطاق القليل من الرصاص لفهم القراءة. نحدد أولا هيكل الشبكة الفرعية اليانصيب ضمن نموذج مجال المصدر المستندة إلى المحولات عبر تشذيب درجة تدريجية. ثم، نحن فقط نغتنم الشبكة الفرعية اليانصيب، جزء صغير من المعلمات بأكملها، على بيانات المجال المستهدحة المشروح للتكيف. للحصول على المزيد من البرامج الفرعية القابلة للتكيف، نقدم إسناد ذوي الاهتمام الذاتي لوزن المعلمات، بما يتجاوز ببساطة تقليم أصغر معلمات الحجم، والذي يمكن أن ينظر إليه على أنه يجمع بين تشذيب الهيكل المنظم وتشذيم درجة غذائية بهدوء. تظهر النتائج التجريبية أن أسلوبنا تتفوق على التكيف النموذج الكامل للتوحيد على أربعة مجالات من خمسة مجالات عندما يكون فقط كمية صغيرة من البيانات المشروحة المتاحة للتكيف. علاوة على ذلك، فإن إدخال إيلاء الإهمال الذاتي الاحتياطيات معلمات أكثر لرؤوس الانتباه مهم في الشبكة الفرعية اليانصيب ويحسن أداء نموذج المجال الهدف. تكشف التحليلات الإضافية الخاصة بنا أنه، إلى جانب استغلال عدد أقل من المعلمات، فإن اختيار الشبكة الفرعية أمر بالغ الأهمية للفعالية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تحليل التبعية عبر المجال غير الخاضع للإكمال هو إنجاز تكيف مجال تحليل التبعية دون استخدام البيانات المسمى في المجال المستهدف. غالبا ما تكون الأساليب الحالية من نوع التوضيح الزائفة، والتي تنشئ البيانات من خلال التوضيح الذاتي للنموذج الأساسي وأداء التدر يب التكراري. ومع ذلك، فشلت هذه الطرق في النظر في تغيير هيكل النموذج لتكييف المجال. بالإضافة إلى ذلك، لا يمكن استغلال المعلومات الهيكلية الواردة في النص بالكامل. لعلاج هذه العيوب، نقترح محلل التبعية التبعية للتكيف مع بنية دلالات (SSADP)، التي تنجز تحليلات التبعية عبر المجال غير الخاضعة للكشف دون الاعتماد على التوضيح الزائفة أو اختيار البيانات. على وجه الخصوص، نقوم بتصميم اثنين من النازعين ميزة لاستخراج الميزات الدلالية والهيكلية على التوالي. لكل نوع من الميزات، يتم استخدام طريقة تكيف الميزة المقابلة لتحقيق تكيف المجال لمواءمة توزيع المجال، والتي تعزز بشكل فعال إمكانية نقل المجال المتقاطع بشكل فعال للنموذج. نحن نقوم بالتحقق من فعالية طرازنا عن طريق إجراء تجارب على Codt1 و CTB9 على التوالي، وتظهر النتائج أن نموذجنا يمكن أن يحقق تحسين أداء ثابتا. علاوة على ذلك، نتحقق من قدرة نقل الهيكل النموذج المقترح عن طريق إدخال اختبار Weisfeiler-Lehman.
أظهر العمل الحديث أن نماذج لغة التدريب المسبق التدريبية يمكن أن تعزز الأداء عند التكيف إلى مجال جديد. ومع ذلك، فإن التكاليف المرتبطة بالتدريب المسبق رفع سؤال مهم: بالنظر إلى ميزانية ثابتة، ما هي الخطوات التي يجب أن يستغرق ممارس NLP لتعظيم الأداء؟ في هذه الورقة، نقوم بدراسة تكيف المجال بموجب قيود الموازنة، ونهجها كمشكلة اختيار العملاء بين شروح البيانات والتدريب المسبق. على وجه التحديد، نقيس تكلفة التوضيحية لثلاث مجموعات بيانات نصية إجرائية وتكلفة ما قبل التدريب من ثلاث نماذج لغوية داخل المجال. ثم نقيم فائدة مجموعات مختلفة من التدريب المسبق والتشريح بالبيانات بموجب قيود ميزانية متفاوتة لتقييم الاستراتيجية التي تعمل بشكل أفضل. نجد أنه بالنسبة للميزانيات الصغيرة، فإن إنفاق جميع الأموال على التوضيحية يؤدي إلى أفضل أداء؛ بمجرد أن تصبح الميزانية كبيرة بما فيه الكفاية، يعمل مزيج من شرح البيانات والتدريب المسبق في المجال على النحو الأمثل. لذلك نقترح أن تكون شروط التعريف الخاصة بالبيانات الخاصة بمهارات العمل يجب أن تكون جزءا من استراتيجية اقتصادية عند تكييف نموذج NLP إلى مجال جديد.
البحث عن الويب هو وسيلة أساسية للبشر للحصول على معلومات، لكنها لا تزال تحديا كبيرا للآلات لفهم محتويات صفحات الويب. في هذه الورقة، نقدم مهمة فهم القراءة الهيكلية المستندة إلى الويب. نظرا لصفحة ويب وسؤال حولها، فإن المهمة هي العثور على إجابة من صفحة ا لويب. تتطلب هذه المهمة نظام ليس فقط لفهم دلالات النصوص ولكن أيضا هيكل صفحة الويب. علاوة على ذلك، اقترحنا Webrc، وهي مجموعة بيانات فهم هيكلية قائمة على شبكة الإنترنت. تتكون WebSrc من أزواج من الإجابات السؤال 400K، والتي يتم جمعها من صفحات الويب 6.4K مع شفرة مصدر HTML المقابلة، لقطات الشاشة والبيانات الوصفية. يتطلب كل سؤال في WebSrc فهم هيكلي معين لصفحة ويب للإجابة، والإجابة إما تمتد عن نصوص على صفحة الويب أو نعم / لا. نحن نقيم مختلف خطوط الأساس القوية على مجموعة بياناتنا لإظهار صعوبة مهمتنا. نحن نحقق أيضا في فائدة المعلومات الهيكلية والميزات المرئية. كانت مجموعة البيانات وخطوط البيانات الخاصة بنا متاحة للجمهور.
على الرغم من تحقيق أداء ملحوظ، عادة ما تستخدم أعمال المعرفة المعززة بالمعرفة عادة قاعدة معرفة متجانسة واحدة متجانسة من تغطية المعرفة المحدودة. وبالتالي، فإنهم غالبا ما ينضون في الأساليب التقليدية لأنه لا يمكن ربط جميع الحوارات بإدخالات المعرفة. تقترح هذه الورقة نموذج جيل حوار جديد، مربع حوار MSKE، لحل هذه المشكلة بثلاث مزايا فريدة من نوعها: (1) بدلا من واحد فقط، يمكن حجز MSKE في وقت واحد على الاستفادة من مصادر المعرفة غير المتجانسة المتعددة (بما في ذلك ولكن لا يقتصر على معرفة المنطقية حقائق ومعرفة النص ومعرفة Infobox) لتحسين تغطية المعرفة؛ (2) لتجنب تعارض الموضوع بين السياق ومصادر المعرفة المختلفة، نقترح اختيار مرجعي متعدد التحديد لتحديد السياق / المعرفة بشكل أفضل؛ (3) نقترح جيل متعدد المراجع لتوليد ردود إعلامية من خلال الإشارة إلى مراجع توليد متعددة في نفس الوقت. تظهر التقييمات الواسعة على مجموعة بيانات صينية الأداء الفائق لهذا العمل ضد النهج المختلفة من أحدث الأحداث. لأفضل المعرفة لدينا، هذا العمل هو أول من يستخدم المعرفة غير المتجانسة متعددة المصدر في توليد الحوار المحسن في مجال المعرفة.
لقد أثبتت تدريب الخصم (AT) كطريقة تنظيمي فعاليتها على المهام المختلفة.على الرغم من وجود تطبيقات ناجحة في بعض مهام NLP، إلا أن الخصائص المميزة لمهام NLP لم يتم استغلالها.في هذه الورقة، نهدف إلى تطبيق مهام فهم القراءة (MRC).علاوة على ذلك، فإننا نتكيف م ع مهام MRC من خلال اقتراح طريقة تدريبية عديدة جديدة تسمى PQAT التي تتعلق بمصفوفة التضمين بدلا من ناقلات Word.للتمييز بين أدوار الممرات والأسئلة، يستخدم PQAT مصفوفات إضافية P / Q Directding إضافية لجمع الاضطرابات العالمية للكلمات من الممرات والأسئلة بشكل منفصل.نحن نختبر الطريقة على مجموعة واسعة من مهام MRC، بما في ذلك RC الاستخراجية المستندة إلى RC واستخراج RC متعددة الخيارات.تظهر النتائج أن التدريب الخصم فعال عالميا، ويحسن PQAT الأداء.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا