تدريب الخصم، طريقة لتعلم الشبكات العصبية العميقة القوية، تضم أمثلة خصومة أثناء التدريب. ومع ذلك، فإن الأساليب الحديثة لتوليد أمثلة allp adversarial تنطوي على البحث عن الفروضي وترميز الجملة باهظة الثمن لتقييد الحالات التي تم إنشاؤها. نتيجة لذلك، لا يزال يمثل تحديا لاستخدام التدريب المشدود الفانيليا لتحسين أداء نماذج NLP، والفوائد غير مرئية بشكل أساسي. تقترح هذه الورقة عملية تدريبية بسيطة ومحسنة من الفانيليا العدائية لنماذج NLP، والتي نستها المهاجمة على التدريب (A2T). الجزء الأساسي من A2T هو هجوم استبدال كلمة جديدة وأرخص محسن لتدريب الفانيليا الخصم. نحن نستخدم A2T لتدريب برت ونماذج روبرتا على مجموعة بيانات IMDB والطماطم الفاسدة والشبكة الصلبة و SNLI. تظهر نتائجنا تجريبيا أنه من الممكن تدريب نماذج NLP قوية باستخدام خصم أرخص بكثير. نوضح أن التدريب الصادق للفانيليا مع A2T يمكن أن يحسن متانة نموذج NLP للهجوم الذي تم تدريبه في الأصل مع النموذج الذي يدافع عنه أيضا ضد أنواع أخرى من هجمات استبدال الكلمات. علاوة على ذلك، نظهر أن A2T يمكن أن تحسن الدقة القياسية لنماذج NLP وتعميم المجال المتبادل والتفسيرية.
Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for constraining the generated instances. As a result, it remains challenging to use vanilla adversarial training to improve NLP models' performance, and the benefits are mainly uninvestigated. This paper proposes a simple and improved vanilla adversarial training process for NLP models, which we name Attacking to Training (A2T). The core part of A2T is a new and cheaper word substitution attack optimized for vanilla adversarial training. We use A2T to train BERT and RoBERTa models on IMDB, Rotten Tomatoes, Yelp, and SNLI datasets. Our results empirically show that it is possible to train robust NLP models using a much cheaper adversary. We demonstrate that vanilla adversarial training with A2T can improve an NLP model's robustness to the attack it was originally trained with and also defend the model against other types of word substitution attacks. Furthermore, we show that A2T can improve NLP models' standard accuracy, cross-domain generalization, and interpretability.
المراجع المستخدمة
https://aclanthology.org/
نقدم خوارزمية تدريبية مستهدفة بسيطة ولكنها فعالة (TAT) لتحسين التدريب الخصم لفهم اللغة الطبيعية.الفكرة الرئيسية هي أن تخطئ الأخطاء الحالية وتحديد أولويات التدريب على الخطوات إلى حيث يخطئ النموذج أكثر.تظهر التجارب أن TAT يمكن أن تحسن بشكل كبير الدقة ع
لقد أثبتت تدريب الخصم (AT) كطريقة تنظيمي فعاليتها على المهام المختلفة.على الرغم من وجود تطبيقات ناجحة في بعض مهام NLP، إلا أن الخصائص المميزة لمهام NLP لم يتم استغلالها.في هذه الورقة، نهدف إلى تطبيق مهام فهم القراءة (MRC).علاوة على ذلك، فإننا نتكيف م
تصحيح الأخطاء المجردة نموذج تعلم الجهاز أمر صعب للغاية حيث يشمل الخطأ عادة بيانات التدريب وعملية التعلم.يصبح هذا أكثر صعوبة بالنسبة لطراز التعلم العميق غير المشفح إذا لم يكن لدينا أدنى فكرة عن كيفية عمل النموذج بالفعل.في هذا الاستطلاع، نراجع الأوراق
حققت نماذج اللغة المدربة مؤخرا (LMS) أداء قويا عند ضبطها على المعايير الصعبة مثل SuperGlue.ومع ذلك، يمكن أن يعاني الأداء عندما يكون هناك عدد قليل جدا من الأمثلة المسمىة للضبط بشكل جيد.يعد تدريب نمط استغلال النمط (PET) نهجا مؤخرا أن أنماط أنماط لتعلم
يشكل التعميم الشامل مسألة مهمة للكشف عن الموقف (SD).في هذه الورقة القصيرة، نقوم بالتحقيق في SD الصلبة العدسة، حيث يتم الاستفادة من المعرفة من البيانات التي تم إنشاؤها من قبل المستخدم لتحسين الأخبار SD على أهداف غير مرئية أثناء التدريب.نقوم بتنفيذ شبك