ترغب بنشر مسار تعليمي؟ اضغط هنا

ماذا تعني ابتسامتك؟اكتشاف المشترك السخرية متعددة الوسائط والشاعر باستخدام احتمال الكم

What Does Your Smile Mean? Jointly Detecting Multi-Modal Sarcasm and Sentiment Using Quantum Probability

350   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تجسد السخرية والشعور من عدم اليقين الجوهري للإدراك الإنساني، مما يجعل الكشف المشترك عن السخرية متعددة الوسائط ومشاعر مهمة صعبة. في ضوء مزايا الاحتمالات الكمومية (QP) في نمذجة هذا الشكوك، تستكشف هذه الورقة إمكانات QP كإطار رياضي وتقترح إطارا للتعليم متعدد المهام المدفوعة من QP (QPM). ينطوي إطار QPM على تشفير تمثيل متعدد الوسائط متعدد الأوضاع، وهي فرعية فرعية تشبه الاصطدام الكمومية وآلية قياس الكم. يتم ترميز كل الكلام متعدد الوسائط (على سبيل المثال، النصي، المرئي البصري) لأول مرة كتراكبة كمية لمجموعة من المصطلحات الأساس باستخدام تمثيل ذو قيمة معقدة. بعد ذلك، يرفع الشبكة الفرعية التي تشبه الكتابة الكمومية تكوين الدولة الكم وتدخل الكم لنموذج التفاعل السياقي بين الكلام المجاورة والارتباطات عبر الطرائق على التوالي. أخيرا، يتم إجراء القياسات الكمية غير المتوافقة على التمثيل المتعدد الوسائط لكل كلام لإحداث النتائج الاحتمالية من السخرية والاعتراف بالمشاعر. تظهر النتائج التجريبية أن نموذجنا يحصل على أداء حديثة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الكشف عن السخري مهم بالنسبة للعديد من مهام NLP مثل تحديد المعنويات في مراجعات المنتج وملاحظات المستخدم والمنتديات عبر الإنترنت.إنها مهمة صعبة تتطلب فهم عميق للغة والسياق والمعرفة العالمية.في هذه الورقة، نحقق ما إذا كانت دمج المعرفة المنطقية تساعد في الكشف عن السخرية.بالنسبة لهذا، فإننا ندمج معارف المنطقية في عملية التنبؤ باستخدام شبكة استئصال الرسم البياني مع تضيير نموذج اللغة المدرب مسبقا كمدخلات.تشير تجاربنا المزودة بثلاث مجموعات بيانات للكشف عن السخرية إلى أن النهج لا يتفوق على النموذج الأساسي.نحن نقوم بإجراء مجموعة شاملة من التجارب لتحليل المكان الذي يضيف فيه دعم المنطقي قيمة وأين يضر التصنيف.ينطبق تنفيذنا علنا على: https://github.com/brcsomnath/commonseense-sarasmasr.
شروط الارتفاع استخراج (أكلت) وتصنيف معنويات الجانب (ASC) هي مهمتان أساسيتان من المهام الفرعية الأساسية والغرامة في تحليل المعنويات على مستوى الجانب (ALSA). في التحليل النصي، تم استخراج المشترك استخراج كل من شروط الارتفاع وأقطاب المعنويات كثيرا بسبب ط لبات أفضل من المهمة الفرعية الفردية. ومع ذلك، في السيناريو متعدد الوسائط، تقتصر الدراسات الحالية على التعامل مع كل مهمة فرعية بشكل مستقل، والتي تفشل في نموذج العلاقة الفطرية بين الأهدافين أعلاه وتتجاهل التطبيقات الأفضل. لذلك، في هذه الورقة، نحن أول من يؤدي ذلك بشكل مشترك أداء أكلت متعددة الوسائط (ماتي) ومتعدد الوسائط (MASC)، ونقترح نهج التعلم المشترك متعدد الوسائط مع اكتشاف العلاقات عبر الوسائط المساعد للمتوسطة تحليل المعنويات على مستوى الجانب (Malsa). على وجه التحديد، نقوم أولا بإنشاء وحدة اكتشاف علاقة نصية إضافية للكشف عنها للتحكم في الاستغلال المناسب للمعلومات المرئية. ثانيا، نعتمد إطار التسلسل الهرمي لسجل الاتصال متعدد الوسائط بين رفيقه ومتك اليومي، بالإضافة إلى توجيه بصري منفصل لكل وحدة فرعية. أخيرا، يمكننا الحصول على جميع أطريات المعنويات على مستوى جانب الجسبي تعتمد على الجوانب المحددة المستخرجة بشكل مشترك. تظهر تجارب واسعة فعالية نهجنا مقابل الأساليب النصية المشتركة والخط الأنابيب ونهج متعددة الوسائط.
تفتح الأسئلة الاستخراجية المفتوحة الإجابة تعمل بشكل جيد على البيانات النصية من خلال استرداد النصوص المرشحة أولا ثم استخراج الإجابة من هؤلاء المرشحين. ومع ذلك، لا يمكن الإجابة على بعض الأسئلة بالنص وحدها ولكنها تتطلب معلومات مخزنة في الجداول. في هذه ا لورقة، نقدم نهج لاستعادة كلا النصين والجداول ذات الصلة بالسؤال من خلال ترميز النصوص والطاولات والأسئلة في مساحة متجه واحدة. تحقيقا لهذه الغاية، نقوم بإنشاء مجموعة بيانات جديدة متعددة الوسائط بناء على مجموعات بيانات النصوص والجدول من العمل ذي الصلة ومقارنة أداء استرجاع مخطط ترميز مختلفة. نجد أن تضمين ناقلات كثيفة نماذج المحولات تتفوق على تضمين متفرق في أربع مجموعات من مجموعات بيانات تقييم. مقارنة نماذج تضمين كثيفة مختلفة، تزيد TRI-Encoders مع ترميز واحد لكل سؤال ونص وجدول أداء استرجاع مقارنة بالتشفيات الثنائية مع ترميز واحد للحصول على سؤال واحد لكل من النص والجداول. نطلق سراح مجموعة بيانات متعددة الوسائط التي تم إنشاؤها حديثا للمجتمع بحيث يمكن استخدامها للتدريب والتقييم.
تحليل السخرية وتحليل المعنويات هي مهام مهمة في فهم اللغة الطبيعية.السخرية هي نوع من التعبير حيث يتم تقليد قطبية المعنويات لعامل التدخل.في هذه الدراسة، استغلنا هذه العلاقة لتعزيز كلتا المهام من خلال اقتراح نهج تعليمي متعدد المهام باستخدام مزيج من الأش رطة الثابتة والسياقة.حقق نظامنا المقترح أفضل نتيجة في فرعية الكشف عن السخرية.
تهدف الترجمة متعددة الوسائط (MMT) إلى تحسين أداء الترجمة من خلال دمج المعلومات المرئية. معظم الدراسات الاستفادة من المعلومات المرئية من خلال دمج ميزات الصورة العالمية كمدخل إضافي أو فك تشفير من خلال حضور المناطق المحلية ذات الصلة في الصورة. ومع ذلك، فإن هذا النوع من استخدام المعلومات المرئية يجعل من الصعب معرفة كيفية تساعد طريقة المرئية ولماذا يعمل. مستوحاة من نتائج (الاقتباس) التي تعد الكيانات أكثر تفكيا في الصورة، نقترح نهجا للتعلم الصريح عبر مستوى الكيانات يهدف إلى زيادة تمثيل الكيان. على وجه التحديد، يتم تأطير النهج كهجوم لإعادة الإعمار الذي يعيد إدخال المدخلات النصية الأصلية من المدخلات متعددة الوسائط يتم استبدال الكيانات بالكيانات بالميزات المرئية. بعد ذلك، يتم استخدام إطار عمل متعدد المهام في الجمع بين مهمة الترجمة ومهمة إعادة الإعمار للاستفادة الكاملة من تعلم تمثيل الكيان عبر الوسائط. تثبت التجارب الواسعة أن نهجنا يمكن أن يحقق أداء قابلا للمقارنة أو أفضل من النماذج الحديثة. علاوة على ذلك، يوضح تحليلنا المتعمق كيفية تحسين المعلومات المرئية الترجمة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا