ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكات الاهتمام التسلسل الهرمي ثنائي الاتجاه استنادا إلى سياق مستوى الوثيقة لاستخراج السبب العاطفي

Bidirectional Hierarchical Attention Networks based on Document-level Context for Emotion Cause Extraction

344   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يهدف استخراج العاطفة (ECE) إلى استخراج الأسباب وراء المشاعر المعينة في النص. تم نشر بعض الأعمال المتعلقة بمهمة اللجنة الاقتصادية لأوروبا وجذب الكثير من الاهتمام في السنوات الأخيرة. ومع ذلك، فإن هذه الطرق تهمل قضايا رئيسيتين: 1) دفع عدد قليل من الانتباه لتأثير معلومات السياق على مستوى المستند على اللجنة الاقتصادية لأوروبا، و 2) عدم وجود استكشاف كاف لكيفية استخدام بند العاطفة المشروح بفعالية. بالنسبة للقضية الأولى، نقترح شبكة انتباه هرمية ثنائية الاتجاه (BHA) المقابلة للمرشح المحدد يسبب البحث عن سياق مستوى المستند في المستند بطريقة منظمة وديناميكية. بالنسبة للقضية الثانية، نقوم بتصميم وحدة تصفية عاطفية (EF) لكل طبقة من شبكة انتباه الرسوم البيانية، والتي تحسب درجة البوابة بناء على جملة العاطفة لتصفية المعلومات غير ذات الصلة. الجمع بين BHA و EF، يمكن ل EF-BHA أن يكتسب ديناميكيا المعلومات السياقية من اتجاهين وفلاتر المعلومات غير ذات صلة. توضح النتائج التجريبية أن EF-BHA يحقق العروض التنافسية على مجموعة بيانات عامة بلغات مختلفة (الصينية والإنجليزية). علاوة على ذلك، نحدد تأثير السياق على استخراج السبب العاطفي وتوفير تصور التفاعلات بين المرشح يسبب البنود والسياقات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح امتداد منظم لتوليد اللغة الشرطية ذات السياق ثنائي الاتجاه، أو تستقيم "مستوحاة من نظرية الدلالية الإطار.يتم توفير التوجيه من خلال إحدى مناهضين: (1) ضبط النموذج الدقيق، والتكييف مباشرة على الإطارات الرمزية الملاحظة، و (2) امتداد جديد لإزالة فك تش فير العمليات المعجمية المعجمية بشكل متعرز.تؤكد التقييمات التلقائية والبشرية أن الجيل الموجهة للأطر الموجهة يسمح بالتلاعب الصريح في دلالات Infill Inhantics المقصودة، مع الحد الأدنى من الخسارة في الاستئمان من النص الذي تم إنشاؤه الإنسان.تنطبق طرقنا بمرونة على مجموعة متنوعة من سيناريوهات الاستخدام، ونحن نقدم عرض ويب تفاعلي.
تضع الكشف عن الشائعات على وسائل التواصل الاجتماعي نماذج لغة مدربة مسبقا (LMS)، مثل Bert، والميزات المساعدة، مثل التعليقات، قيد الاستخدام. ومع ذلك، من ناحية، فإن مجموعات بيانات الكشف عن الشائعات في الشركات الصينية مع تعليقات نادرة؛ من ناحية أخرى، فإن التفاعل المكثف من الاهتمام على النماذج القائمة على المحولات مثل بيرت قد يعيق تحسين الأداء. لتخفيف هذه المشاكل، نبني مجموعة بيانات جديدة من المدونات الصغيرة الصينية تسمى Weibo20 من خلال جمع الوظائف والتعليقات المرتبطة بها من سينا ​​ويبو واقترح فرقة جديدة تسمى Stanker (Bracking Network بناء على الانتباه ملثمين). تتبنى Stanker نماذج برت ملثمين من اهتمامات اثنين من المحبوسين على مستوى تشفير قاعدة. على عكس الخطابة الأصلية، يتخذ نموذج LGAM-Bert الجديد الخاص بنا تعليقات كملفات مساعدة مهمة ويعتد على الانتباه بين الوظائف والتعليقات على الطبقات المنخفضة. أظهرت التجارب على Weibo20 وثلاث مجموعات بيانات وسائل التواصل الاجتماعي الحالية أن الستائر تفوقت على جميع النماذج المقارنة، وخاصة ضرب الدولة القديمة في مجموعة بيانات Weibo.
استخراج الأحداث على مستوى المستند أمر بالغ الأهمية لمختلف مهام معالجة اللغة الطبيعية لتوفير معلومات منظمة.النهج الحالية عن طريق النمذجة المتسلسلة إهمال الهياكل المنطقية المعقدة للنصوص الطويلة.في هذه الورقة، نستفيد بين تفاعلات الكيان وتفاعلات الجملة خ لال المستندات الطويلة وتحويل كل وثيقة إلى رسم بياني غير مرمى غير مسبهب من خلال استغلال العلاقة بين الجمل.نقدم مجتمع الجملة لتمثيل كل حدث كشركة فرعية.علاوة على ذلك.توضح التجارب أن إطارنا يحقق نتائج تنافسية على الأساليب الحديثة على مجموعة بيانات استخراج الأحداث على مستوى الوثيقة على نطاق واسع.
استخراج العلاقات على مستوى المستند يهدف إلى تحديد العلاقات بين الكيانات في وثيقة كاملة. اعتمدت الجهود السابقة لالتقاط التبعيات البعيدة المدى اعتمادا كبيرا على تمثيلات قوية ضمنيا تعلمت من خلال (الرسم البياني) الشبكات العصبية، مما يجعل النموذج أقل شفاف ية. لمعالجة هذا التحدي، في هذه الورقة، نقترح Logire، نموذج احتمالي رواية لاستخراج العلاقة على مستوى المستند من خلال قواعد المنطق التعلم. يعامل Logire القواعد المنطقية مثل المتغيرات الكامنة وتتكون من وحدات اثنين: مولد القاعدة واستخراج العلاقة. إن مولد القاعدة هو توليد قواعد المنطق التي يحتمل أن تسهم في التنبؤات النهائية، ونضول النازع العلاقة تنبؤات نهائية بناء على قواعد المنطق التي تم إنشاؤها. يمكن تحسين هاتين الوحداتتين بكفاءة مع خوارزمية التوقعات (EM). من خلال إدخال القواعد المنطقية في الشبكات العصبية، يمكن ل Rogire أن تلتقط الصريح التبعيات طويلة المدى وكذلك الاستمتاع بتفسير أفضل. تظهر النتائج التجريبية أن تتفوق بشكل كبير على العديد من خطوط الأساس القوية من حيث الأداء العلاقة والاتساق المنطقي. يتوفر الكود الخاص بنا في https://github.com/rudongyu/logire.
لقد تم استخراج العلاقات عبر مجموعة نصية كبيرة غير مستمدة نسبيا في NLP، لكنه مهم للغاية بالنسبة لمجالات عالية القيمة مثل الطب الحيوي، حيث يكون الحصول على استدعاء عالية من أحدث النتائج أمر حاسم للتطبيقات العملية. بالمقارنة مع استخراج المعلومات التقليدي ة المحصورة على تمديد النص القصير، فإن استخراج العلاقات على مستوى المستند يواجه تحديات إضافية في كل من الاستدلال والتعلم. وبالنظر إلى تمديدات نصية أطول، فإن الهندسة العصبية الحديثة هي الإشراف الذاتي الأقل فعالية ومحددة المهام مثل الإشراف البعيد يصبح صاخبا جدا. في هذه الورقة، نقترح انحلال استخراج العلاقات على مستوى الوثيقة في الدقة المتعلقة بالكشف عن العلاقة والحجة، مما أدى إلى إلهام من دلالات ديفيدسون. تمكننا هذا من دمج نماذج الخطاب الصريحة والاستفادة من الإشراف الذاتي المعياري لكل مشكلة فرعية، وهو أقل عرضة للضوضاء ويمكن أن يكون مزيدا من النهايات المكررة عبر التباين. نقوم بإجراء تقييم شامل في قراءة الآلة الطبية الحيوية لعلم الأورام الدقيقة، حيث تذكر علاقة الفقرة الشاملة سائدة. تتفوق طريقةنا على الدولة السابقة للفن، مثل التعلم متعدد النطاق والشبكات العصبية الرسمية، بأكثر من 20 نقطة F1 المطلقة. وانطبق الربح بشكل خاص بين أكثر حالات العلاقات الأكثر تحديا التي لا تحدث حججها في فقرة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا