ترغب بنشر مسار تعليمي؟ اضغط هنا

تتيح الشبكات التركيبية التعميم المنهجي لفهم اللغة الأساسية

Compositional Networks Enable Systematic Generalization for Grounded Language Understanding

266   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

البشر مرنين بشكل ملحوظ عند فهم جمل جديدة تشمل مجموعات من المفاهيم التي لم تصادفها من قبل. وقد أظهر العمل الحديث أنه في حين أن الشبكات العميقة يمكن أن تحاكي بعض قدرات اللغة البشرية عند تقديمها مع جمل جديدة، فإن الاختلاف المنهجي يكشف عن القيود في قدرات فهم اللغة للشبكات. نوضح أن هذه القيود يمكن التغلب عليها من خلال معالجة تحديات التعميم في مجموعة بيانات GSCAN، والتي تقيس صراحة مدى جودة الوكيل قادرة على تفسير الأوامر اللغوية الجديدة في الرؤية، على سبيل المثال، أزواج رواية من الصفات والأسماء. مبدأ المفتاح الذي نستخدمه هو التركيز: أن الهيكل التركيبي للشبكات يجب أن يعكس الهيكل التركيبي للنطاق المشكلة التي يعالجونها، مع السماح لمعايير أخرى أن تتعلم نهاية إلى نهاية. إننا نبني آلية للأغراض العامة التي تمكن الوكلاء من تعميم فهم لغتهم إلى المجالات التركيبية. من الأهمية، لدى شبكتنا نفس الأداء الحديثة مثل العمل السابق أثناء تعميم معرفته عندما لا يعمل العمل السابق. توفر شبكتنا أيضا مستوى من الترجمة الشفوية التي تمكن المستخدمين من تفتيش ما يتعلمه كل جزء من الشبكات. إن فهم اللغة الأسطورية القوية دون إخفاقات مثيرة وبدون حالات الزاوية أمر بالغ الأهمية لبناء الروبوتات الآمنة والعادلة؛ نوضح الدور الهام الذي يمكن أن يلعبه التركيز في تحقيق هذا الهدف.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الملخص نقدم إطارا جديدا للملقة، دلالات الحدث العصبي (NES)، لفهم اللغة التركيبية التركيبية.يعامل نهجنا جميع الكلمات كصفوفات مصنوعة من التصنيف لتشكيل عقوبة ذات معنى بضرب درجات الإخراج.تنطبق هذه المصنفات على المناطق المكانية (الأحداث) ويمشر NES هيكلها ا لدلالي من اللغة عن طريق توجيه الأحداث إلى مدخلات حجة مصنف مختلفة عن طريق الاهتمام الناعم.NES هي نهاية قابلة للتدريب من خلال نزول التدرج مع الحد الأدنى من الإشراف.نقيم طريقةنا على مهام اللغة التركيبية المتراكمة في إعدادات الاصطناعية والواقعية التي تسيطر عليها.توفر NES إمكانية تعميم أقوى من الأطر التركيبية القياسية القائمة على الوظائف، مع تحسين الدقة على الأساليب العصبية الحديثة في مهام اللغة العالمية الحقيقية.
على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك ل صريح من قبل النحو الرمزي، نقترح إطار فك التشفير الجديد الذي يحافظ على التعبير عن النماذج والعمومية من نماذج التسلسل إلى التسلسل مع تضم محاذاة على غرار المعجم ومعالجة المعلومات المنفذة. على وجه التحديد، نقوم بتحلل فك التشفير في مرحلتين حيث يتم وضع علامة على حامل الإدخال أولا مع رموز الدلالية التي تمثل معنى الكلمات الفردية، ثم يتم استخدام نموذج تسلسل إلى تسلسل للتنبؤ بتصميم تمثيل المعنى النهائي على الكلام والعلامة المتوقعة تسلسل. النتائج التجريبية على ثلاث مجموعات بيانات تحليل الدلالات توضح أن النهج المقترح يحسن باستمرار التعميم التركيبي عبر الهندسة النموذجية والنطاقات والإضفاءات الدلالية.
البنية القياسية المستخدمة في التعليمات التالية غالبا ما تكافح على تركيبات رواية من الفئة (E.G. التنقل إلى المعالم أو التقاط الأشياء) لاحظت أثناء التدريب.نقترح هندسة معيارية لاتباع تعليمات اللغة الطبيعية التي تصف تسلسلات فرعية متنوعة.في نهجنا، فروع ال وحدات الفرعية تنفذ كل تعليمات لغة طبيعية لنوع فرعي محدد.يتم اختيار تسلسل من الوحدات النمطية للتنفيذ عن طريق تعلم تقسيم التعليمات والتنبؤ بنوع فرعي لكل شريحة.بالمقارنة مع أساليب التسلسل القياسية وغير المعيارية إلى التسلسل على Alfred، وهي تعليم صعبة بعد المعيار، نجد أن التجديف يحسن التعميم على التراكيب الفرعية الجديدة، وكذلك في البيئات غير المرئية في التدريب.
نقدم خوارزمية تدريبية مستهدفة بسيطة ولكنها فعالة (TAT) لتحسين التدريب الخصم لفهم اللغة الطبيعية.الفكرة الرئيسية هي أن تخطئ الأخطاء الحالية وتحديد أولويات التدريب على الخطوات إلى حيث يخطئ النموذج أكثر.تظهر التجارب أن TAT يمكن أن تحسن بشكل كبير الدقة ع لى التدريب الخصم القياسي على الغراء وتحقيق نتائج جديدة من أحدث النتائج في XNLI.سيتم إصدار شفرة لدينا عند قبول الورقة.
نحن نصف خسارة اهتمام مدفوع المستوى الذي يحسن التعميم التركيبي في المحللين الدلاليين.يعتمد نهجنا على الخسائر القائمة التي تشجع على خرائط الاهتمام في نماذج التسلسل العصبي إلى التسلسل لتقليد إخراج خوارزميات محاذاة الكلمة الكلاسيكية.حيث استخدم العمل السا بق محاذاة على مستوى الكلمات، ونحن نركز على يمتد؛اقتراض الأفكار من الترجمة الآلية القائمة على العبارة، نحن محاذاة السكتة الدلالية في تبييل الدلالي إلى امتداد جمل المدخلات، وتشجيع آليات الاهتمام العصبي لتقليد هذه المحاذاة.تعمل هذه الطريقة على تحسين أداء المحولات، RNNs، والكفران الهيكلية على ثلاثة معايير للتعميم التركيبي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا