ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة محاذاة الدلالات الدلالية الجميلة لتأريض اللغة الزمنية الخاضعة للإشراف

Fine-grained Semantic Alignment Network for Weakly Supervised Temporal Language Grounding

256   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تهدف أساس التأريض اللغوي (TLG) إلى توطين شريحة فيديو في فيديو غير جذاب بناء على وصف لغة طبيعية. لتخفيف التكلفة الباهظة الثمن التوضيحية للشروح اليدوية لملصقات الحدود الزمنية، نحن مخصصة للإعداد الإشراف ضعيف، حيث يتم توفير أوصاف على مستوى الفيديو فقط للتدريب. تولد معظم الأساليب الإشرافية الأكثر إشرافا ضعفا مجموعة شريحة مرشحة وتعلم محاذاة متعددة الوسائط من خلال إطار مستمد من MIL. ومع ذلك، يتم فقد الهيكل الزمني للفيديو وكذلك الدلالات المعقدة في الجملة أثناء التعلم. في هذا العمل، نقترح إطار رواية خالية من المرشحين: شبكة محاذاة الدلالات الدلالية الجميلة (FSAN)، ل TLG الإشراف ضعيف. بدلا من عرض الجملة واللحظات المرشحة ككل، يتعلم FSAN محاذاة الدلالات المسلقة عبر الأقراص من قبل وحدة التفاعل عبر مشروط تكرارية، وتولد خريطة محاذاة من الدلالات القابلة للتكنولوجيا الراقية، وتشغيل التأريض مباشرة على أعلى الخريطة. يتم إجراء تجارب واسعة على معايير اثنين واستخدامها على نطاق واسع: تعويضات ActivityNet، و Didemo، حيث تحقق FSAN لدينا أداء حديثة من بين الفن.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف اللغة الزمنية الأرضية في مقاطع الفيديو إلى توطين الفترة الزمنية ذات الصلة بالسجن الاستعلام المحدد. الطريقة السابقة تعاملها إما بمهمة الانحدار للحدود أو مهمة استخراج تمتد. ستقوم هذه الورقة بصياغة لغة زمنية تأريض في فهم قراءة الفيديو واقتراح شبكة إعلانات العلاقة (Ranet) لمعالجتها. يهدف هذا الإطار إلى تحديد خيار لحظة فيديو من مجموعة الإجابة المحددة مسبقا بمساعدة Incrse-and-Fine-Query-Query-Quicies Infraction و China- يقترح Interactor Interactor من الاختيار مطابقة المعلومات المرئية والنصية في وقت واحد في مستويات لحظة الجملة ومستويات لحظة الرمز المميز، مما يؤدي إلى تفاعل عبر مشروط خشن وغرامة. علاوة على ذلك، يتم تقديم منشئ علاقة متعددة الخيارات الرواية من خلال الاستفادة من الأزلاء الرسم البياني لالتقاط التبعيات بين خيارات لحظات الفيديو للحصول على أفضل اختيار الخيار. تجارب واسعة النطاق على تصنيف ActivityNet-Campative و Tacos و Charades-Sta تثبت فعالية حلنا. ستكون الرموز متاحة في https://github.com/huntersxsx/ranet.
تهدف استخراج العلاقات الزمنية الفائقة (FINETEMPRL) إلى الاعتراف بتذكير فترات الزمن والجدول الزمني في النص.جزء مفقود في نماذج التعلم العميقة الحالية ل Finetemprel هو فشلهم في استغلال الهياكل النحوية لجمل المدخلات لإثراء ناقلات التمثيل.في هذا العمل، نق ترح ملء هذه الفجوة من خلال إدخال طرق جديدة لإدماج الهياكل النحوية في نماذج التعلم العميق ل Finetemprel.يركز النموذج المقترح على نوعين من المعلومات النحوية من أشجار التبعية، أي عشرات الأهمية التي تستند إلى بناء الجملة لتعلم تمثيل الكلمات والاتصالات النحوية لتحديد كلمات السياق الهامة لذكر الحدث.نقدم أيضا تقنيات جديدة لتسهيل نقل المعرفة بين المهام الفرعية في Finetempr، مما يؤدي إلى نموذج جديد مع الأداء الحديث لهذه المهمة.
في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصي ات المقدمة في العمل السابق (على اللغة الإنجليزية).تظهر نتائجنا أن هناك تفضيلات محددة للغة لهذه الفرط.نحن نقدم أفضل إعدادات للهيكلية إلى مجموعة من اللغات ذات العلاقة: البنجابية، الغوجاراتية والمريثي مع نتائج مواتية.نجد أيضا أن نموذج SVD يتم ضبطه بشكل مناسب يتفوق على SGNS لمعظم لغاتنا وهو أيضا أكثر قوة في إعداد الموارد المنخفضة.
لا ينبغي أن يؤدي نظام الحوار الذكي في إعداد متعدد المنعطف إلى إنشاء الاستجابات فقط من نوعية جيدة، ولكن يجب أن تولد أيضا الردود التي يمكن أن تؤدي إلى نجاح طويل الأجل للحوار. على الرغم من أن الأساليب الحالية تحسنت جودة الاستجابة، إلا أنها تنظر إلى الإش ارات التدريبية الموجودة في بيانات الحوار. يمكننا الاستفادة من هذه الإشارات لتوليد بيانات التدريب الإشراف ضعيف لسياسة حوار التعلم ومقدر المكافآت، وجعل السياسة تتخذ إجراءات (يولد الردود) التي يمكن أن تتوقع الاتجاه المستقبلي للمحادثة الناجحة (مكافأة). نحاكي الحوار بين وكيل ومستخدم (على غرار وكيل مع هدف التعلم الخاضع للإشراف) للتفاعل مع بعضها البعض. يستخدم الوكيل حدودا ديناميكيا لإنشاء ردود متنوعة في المرتبة واستغلال الاستكشاف لتحديد عدد الردود الأعلى. يتم تقييم كل زوج عمل محاكي لحالة الدولة (يعمل كشروح ضعيفة) مع ثلاث وحدات الجودة: الدلالي ذات الصلة والتماسك الدلالي وتدفق متسق. تشير الدراسات التجريبية التي لديها معيارين إلى أن طرازنا يمكن أن نفذت بشكل كبير جودة الاستجابة وتؤدي إلى محادثة ناجحة على كل من التقييم التلقائي والحكم البشري.
تحليل التبعية عبر المجال غير الخاضع للإكمال هو إنجاز تكيف مجال تحليل التبعية دون استخدام البيانات المسمى في المجال المستهدف. غالبا ما تكون الأساليب الحالية من نوع التوضيح الزائفة، والتي تنشئ البيانات من خلال التوضيح الذاتي للنموذج الأساسي وأداء التدر يب التكراري. ومع ذلك، فشلت هذه الطرق في النظر في تغيير هيكل النموذج لتكييف المجال. بالإضافة إلى ذلك، لا يمكن استغلال المعلومات الهيكلية الواردة في النص بالكامل. لعلاج هذه العيوب، نقترح محلل التبعية التبعية للتكيف مع بنية دلالات (SSADP)، التي تنجز تحليلات التبعية عبر المجال غير الخاضعة للكشف دون الاعتماد على التوضيح الزائفة أو اختيار البيانات. على وجه الخصوص، نقوم بتصميم اثنين من النازعين ميزة لاستخراج الميزات الدلالية والهيكلية على التوالي. لكل نوع من الميزات، يتم استخدام طريقة تكيف الميزة المقابلة لتحقيق تكيف المجال لمواءمة توزيع المجال، والتي تعزز بشكل فعال إمكانية نقل المجال المتقاطع بشكل فعال للنموذج. نحن نقوم بالتحقق من فعالية طرازنا عن طريق إجراء تجارب على Codt1 و CTB9 على التوالي، وتظهر النتائج أن نموذجنا يمكن أن يحقق تحسين أداء ثابتا. علاوة على ذلك، نتحقق من قدرة نقل الهيكل النموذج المقترح عن طريق إدخال اختبار Weisfeiler-Lehman.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا