ترغب بنشر مسار تعليمي؟ اضغط هنا

K- التوصيل: نموذج اللغة المحقونة المعرفة مسبقا لفهم اللغة الطبيعية والجيل في التجارة الإلكترونية

K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce

403   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهرت نماذج اللغة الموجودة مسبقا مسبقا (PLMS) فعالية التعلم الإشراف على الذات لمجموعة واسعة من مهام معالجة اللغة الطبيعية (NLP). ومع ذلك، فإن معظمهم لا يدركون بشكل صريح المعرفة الخاصة بالمجال، وهو أمر ضروري لمهام المصب في العديد من المجالات، مثل المهام في سيناريوهات التجارة الإلكترونية. في هذه الورقة، نقترح K- المكونات، نموذج لغة محقوم المعرفة مسبقا بناء على محول تشفير التشفير التي يمكن تحويلها إلى كل من فهم اللغة الطبيعية ومهام الجيل. على وجه التحديد، نقترح خمسة أهداف مسبقة الإشراف على علم المعرفة على المعرفة في تصميم تعلم المعرفة الخاصة بالمجال، بما في ذلك قواعد المعرفة الخاصة بالمجال التجاري، وجوانب كيانات المنتج، وفئات من كيانات المنتجات، ومقترحات البيع الفريدة من كيانات المنتج. نتحقق من طريقتنا في مجموعة متنوعة من سيناريوهات التجارة الإلكترونية التي تتطلب معرفة خاصة بالمجال، بما في ذلك إكمال قاعدة معارف المنتج، وخصم منتج مبيعات، والحوار متعدد الدوران. تتفوق K- التوصيل بشكل كبير على خطوط الأساس في جميع المجالات، والتي توضح أن الطريقة المقترحة تتعلم بفعالية مجموعة متنوعة متنوعة من المعرفة الخاصة بالمجال لكل من مهام الفم والجيل اللغوي. رمز لدينا متاح.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتم استخدام تقطير المعرفة (KD) على نطاق واسع لضغط ونشر نماذج لغة كبيرة مدربة مسبقا على أجهزة EDGE لتطبيقات العالم الحقيقي.ومع ذلك، فإن مساحة البحث واحدة مهملة هي تأثير الملصقات الصاخبة (التالفة) على KD.نقدم، إلى حد علمنا، أول دراسة حول الملكية الدماغ ية مع ملصقات صاخبة في فهم اللغة الطبيعية (NLU).نحن توثق نطاق المشكلة وتقديم طريقتين لتخفيف تأثير ضوضاء التسمية.تشير التجارب على مرجع الغراء إلى أن أساليبنا فعالة حتى تحت مستويات ضوضاء عالية.ومع ذلك، تشير نتائجنا إلى أن المزيد من البحث ضروري للتعامل مع ضجيج الملصقات تحت KD.
لا يمكن أن تلتقط نماذج تمثيل اللغة المدربة مسبقا مجردة مسبقا (PLMS) بشكل جيد معرفة واقعية من النص. في المقابل، يمكن أن تمثل طرق تضمين المعرفة (KE) بشكل فعال الحقائق العلائقية في الرسوم البيانية المعرفة (KGS) مع تضمينات كيانات مفيدة، لكن نماذج كيد الت قليدية لا يمكنها الاستفادة الكاملة من المعلومات النصية الوفيرة. في هذه الورقة، نقترح نموذجا موحدا لتضمين المعرفة و LanguagereTresentation المعرفي (Kepler)، والذي لا يمكن أن يدمج المعرفة الواقعية بشكل أفضل فقط في PLMS ولكنه ينتج أيضا كه معزز نصيا فعالا مع PLMS القوي. في Kepler، نقوم بتشفير أوصاف الكيان النصي مع PLM كأنبات، ثم قم بتحسين أهداف النمذجة Ke واللغة المشتركة. تظهر النتائج التجريبية أن Kepler يحقق أدائها الحديثة في مهام NLP المختلفة، ويعمل أيضا بشكل ملحوظ كنموذج كه حثي على التنبؤ بربط KG. علاوة على ذلك، بالنسبة إلى ما قبل التدريب وتقييم Kepler، فإننا نبني Wikidata5M1، ومجموعة بيانات KG واسعة النطاق مع أوصاف كيان محاذاة، وأساليب KE-the-the-the-the-the-the-benchmark على ذلك. يجب أن تكون بمثابة مرجع كيد جديد وتسهيل البحث في كجم كبير، حثي كه، و KG مع النص. يمكن الحصول على شفرة المصدر من https://github.com/thu-keg/kepler.
يشكل جيل النص المخصب المعرفي تحديات فريدة من نوعها في النمذجة والتعلم، مما يدفع البحوث النشطة في العديد من الاتجاهات الأساسية، بدءا من النمذجة المتكاملة للتمثيل العصبي والمعلومات الرمزية في الهياكل التسلسلية / الهرمية / الهرمية، والتعلم دون إشراف مبا شر بسبب تكلفة الهيكلالتعليق التوضيحي، والتحسين الفعال والاستدلال مع قيود هائلة وعالمية، على أساس اللغة على طرائق متعددة، والمنطق الاسليمي مع المعرفة المنطقية الضمنية ومعرفة الخلفية.في هذا البرنامج التعليمي، سنقدم خريطة طريق لتشكيل الأساليب الحديثة لمعالجة هذه التحديات في هذه المشكلة المتطورة.سنغمر عميقا في مكونات تقنية مختلفة: كيفية تمثيل المعرفة، وكيفية إطعام المعرفة في نموذج الجيل، وكيفية تقييم نتائج الجيل، وما هي التحديات المتبقية؟
نقدم خوارزمية تدريبية مستهدفة بسيطة ولكنها فعالة (TAT) لتحسين التدريب الخصم لفهم اللغة الطبيعية.الفكرة الرئيسية هي أن تخطئ الأخطاء الحالية وتحديد أولويات التدريب على الخطوات إلى حيث يخطئ النموذج أكثر.تظهر التجارب أن TAT يمكن أن تحسن بشكل كبير الدقة ع لى التدريب الخصم القياسي على الغراء وتحقيق نتائج جديدة من أحدث النتائج في XNLI.سيتم إصدار شفرة لدينا عند قبول الورقة.
حققت نماذج اللغة المدربة مسبقا (PLMS) مثل بيرت تقدما كبيرا في NLP. عادة ما تحتوي المقالات الإخبارية على معلومات نصية غنية، ويحتوي plms على إمكانات تعزيز نمذجة نص الأخبار لمختلف تطبيقات الأخبار الذكية مثل التوصية الإخبارية واسترجاعها. ومع ذلك، فإن معظ م plms الموجودة كبيرة الحجم مع مئات الملايين من المعلمات. تحتاج العديد من تطبيقات الأخبار عبر الإنترنت إلى خدمة ملايين المستخدمين الذين يعانون من تسامح الكمون المنخفض، مما يطرح تحديات كبيرة لإدماج PLMS في هذه السيناريوهات. يمكن تقنيات تقطير المعرفة ضغط plm كبيرة في واحدة أصغر بكثير، وفي الوقت نفسه يبقي الأداء الجيد. ومع ذلك، فإن نماذج اللغة الحالية مدربة مسبقا وتقليدها على Corpus العامة مثل Wikipedia، والتي تحتوي على ثغرات مع مجال الأخبار وقد تكون فرعية نفسية بالنسبة للذكاء الأخبار. في هذه الورقة، نقترح Newsbert، والتي يمكن أن تقطير plms لذكاء الأخبار الفعال والفعال. في نهجنا، نقوم بتصميم إطار التعلم المشترك والتقطير المشترك للمعلم لتعليم كل من نماذج المعلم والطلاب، حيث يمكن أن يتعلم نموذج الطالب من تجربة التعلم لنموذج المعلم. بالإضافة إلى ذلك، نقترح طريقة تقطير الزخم من خلال دمج تدرجات نموذج المعلم في تحديث نموذج الطلاب لتحسين المعرفة التي تعلمتها نموذج المعلم. تجارب شاملة على رقمين في العالم الحقيقي مع ثلاث مهام تظهر أن Newsbert يمكن أن تمكن العديد من تطبيقات الأخبار الذكية مع نماذج أصغر بكثير.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا