اكتسبت Chatbots Social Chatbots شعبية هائلة، وجاذبيتها لا تكمن فقط في قدرتها على الاستجابة للطلبات المتنوعة من المستخدمين، ولكن أيضا في القدرة على تطوير اتصال عاطفي مع المستخدمين. لتعزيز وتعزيز Chatbots الاجتماعي، نحتاج إلى التركيز على زيادة تفاعل المستخدم وتأخذ في الاعتبار كل من الحاصل الفكري والعاطفي في وكلاء المحادثة. لذلك، في هذا العمل، نقترح مهمة المعنويات تدرك العاطفة التي تسيطر عليها توليد الحوار الشخصية التي تمنح الجهاز القدرة على الاستجابة عاطفيا ووفقا لشخصية المستخدم. نظرا لأن المشاعر والعواطف مرتبطة بدرجة كبيرة، نستخدم معرفة المشاعر بالكلام السابق لتوليد الاستجابة العاطفية الصحيحة وفقا لشخص المستخدم. نقوم بتصميم إطار توليد حوار يستند إلى المحولات، ينشئ الردود الحساسة لعاطفة المستخدم ويتوافق مع الشخصية والشاعر أيضا. علاوة على ذلك، يتم تشفير معلومات الشخصية من قبل تشفير محول مختلف، إلى جانب تاريخ الحوار، يتم تغذيةها إلى وحدة فك الترميز لتوليد الاستجابات. ناهز DataSet PersonAchat مع معلومات المشاعر لتحسين جودة الاستجابة. تظهر النتائج التجريبية على DataStet Personachat أن الإطار المقترح يتفوق بشكل كبير على خطوط الأساس الحالية، مما يولد ردود عاطفية شخصية وفقا للمشاعر التي توفر اتصال عاطفي أفضل ورضا المستخدمين كما هو مطلوب في chatbot الاجتماعي.
Social chatbots have gained immense popularity, and their appeal lies not just in their capacity to respond to the diverse requests from users, but also in the ability to develop an emotional connection with users. To further develop and promote social chatbots, we need to concentrate on increasing user interaction and take into account both the intellectual and emotional quotient in the conversational agents. Therefore, in this work, we propose the task of sentiment aware emotion controlled personalized dialogue generation giving the machine the capability to respond emotionally and in accordance with the persona of the user. As sentiment and emotions are highly co-related, we use the sentiment knowledge of the previous utterance to generate the correct emotional response in accordance with the user persona. We design a Transformer based Dialogue Generation framework, that generates responses that are sensitive to the emotion of the user and corresponds to the persona and sentiment as well. Moreover, the persona information is encoded by a different Transformer encoder, along with the dialogue history, is fed to the decoder for generating responses. We annotate the PersonaChat dataset with sentiment information to improve the response quality. Experimental results on the PersonaChat dataset show that the proposed framework significantly outperforms the existing baselines, thereby generating personalized emotional responses in accordance with the sentiment that provides better emotional connection and user satisfaction as desired in a social chatbot.
المراجع المستخدمة
https://aclanthology.org/
نحن نعتمد على الحجج في حياتنا اليومية لتسليم آرائنا وتساعدهم على الأدلة، مما يجعلها أكثر إقناعا بدورها.ومع ذلك، يمكن أن يكون العثور على والحجج وصياغة التحدي.في هذا العمل، نقدم Arg-Ctrl - نموذج لغوي لتوليد الوسيطة الذي يمكن التحكم فيه لتوليد حجج مستوى
بالنسبة لجهاز كمبيوتر يتفاعل بشكل طبيعي مع إنسان، يجب أن يكون يشبه الإنسان.في هذه الورقة، نقترح نموذج توليد الاستجابة العصبي مع التعلم متعدد المهام للجيل والتصنيف، مع التركيز على العاطفة.يتم تدريب نموذجنا على أساس بارت (لويس وآخرون.، 2020)، وهو نموذج
التركيز النهج الحالية لتوليد الاستجابة المتعاطفة على تعلم نموذج للتنبؤ بميزة العاطفة وتوليد استجابة بناء على هذه الملصق وحققت نتائج واعدة. ومع ذلك، فإن السبب العاطفي، وهو عامل أساسي للاستجابة التعاطفية، يتم تجاهله. السبب العاطفة هو حافز للعواطف البشر
يعد توليد الاستجابة الشخصية ضروريا لمزيد من المحادثات التي يشبها الإنسان. ومع ذلك، وكيفية نموذج معلومات تخصيص المستخدم مع عدم وجود أوصاف شخص مستخدم صريح أو التركيبة السكانية لا يزال قيد التحقيق فيها. لمعالجة مشكلة بيانات Sparsity للبيانات والعدد الها
تعتمد أساليب نقل نمط النص الحالي (TST) على أسلوب الطبقات لتفكيك سمات محتوى النص والأناقة لنقل نمط النص. في حين أن المصنف الأسلوب يلعب دورا حاسما في طرق TST الحالية، لا يوجد تحقيق معروف على تأثيره على أساليب TST. في هذه الورقة، نقوم بإجراء دراسة تجريب