ترغب بنشر مسار تعليمي؟ اضغط هنا

التفكير النقدي لنماذج اللغة

Critical Thinking for Language Models

356   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تأخذ هذه الورقة خطوة أولى نحو مناهج تفكير حرجة لنماذج اللغة التراجعية العصبية. نقدم لجنة اصطناعية من الحجج الصالحة تخصيصها، وتوليد نصوص جدلية اصطناعية لتدريب CRPIPT: محول تفكير حرج مدرب مسبقا مسبقا على أساس GPT-2. يمكن ملاحظة تأثيرات تعليمية نقل كبيرة: مدربة على ثلاث مخططات أساسية بسيطة، يكمل CRIPT بدقة استنتاجات مختلفة من أنواع الحجج المختلفة والمزيد. تعميم CRIPT مع مخططات الوسيطة الأساسية بطريقة صحيحة. علاوة على ذلك، نحصل على نتائج متسقة واعدة لمعايير NLU. على وجه الخصوص، تتجاوز دقة Cript الصفرية في تشخيص الغراء أداء GPT-2 بنسبة 15 نقطة مئوية. تشير النتائج إلى أن التدريب المسترد الوسيط على النصوص التي تجسد قدرات التفكير الأساسي (مثل مغطاة عادة في كتب التفكير الناقد) قد تساعد نماذج اللغة للحصول على مجموعة واسعة من مهارات المنطق. النصوص المنحجية الاصطناعية المقدمة في هذه الورقة هي نقطة انطلاق واعدة لبناء مناهج التفكير النقدي لنماذج اللغة. "



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تستخدم أساليب الرالف على نطاق واسع لتفسير تنبؤات الشبكة العصبية، ولكن غالبا ما تعارض أساليب أنواع مختلفة من الأساليب المختلفة حتى في تفسيرات نفس التنبؤ الذي أدلى به نفس النموذج. في هذه الحالات، كيف يمكننا تحديد متى تكون هذه التفسيرات جديرة بالثقة بما يكفي لاستخدامها في التحليلات؟ لمعالجة هذا السؤال، نقوم بإجراء تقييم شامل وكمي لأساليب الرالف في فئة أساسية من نماذج NLP: نماذج اللغة العصبية. نقيم جودة تفسيرات التنبؤ من وجهات نظر اثنين يمثل كل منها خاصية مرغوبة لهذه التفسيرات: المعقولية والإخلاص. يتم إجراء تقييمنا على أربع مجموعات بيانات مختلفة تم بناؤها من الشرح البشري الحالي للاتفاقات النحوية واللالسة، على مستوى الحكم على مستوى الحكم والوثائق. من خلال تقييمنا، حددنا طرق مختلفة من الطرق التي يمكن أن تسفر عن تفسيرات ذات جودة منخفضة. نوصي بأن ينشر العمل المستقبلي لنشر هذه الأساليب إلى نماذج اللغة العصبية صحة تفسيراتها بعناية قبل رسم رؤى.
استخدام البيانات من اختبارات المرنة الإنجليزية، والتي أبلغت فيها المواضيع ذاتها الذاتي عن جنسهن وعمرها والتعليم والعرق، ندرس اختلافات الأداء في نماذج اللغة المحددة مسبقا عبر المجموعات الديموغرافية، والتي تحددها هذه الصفات (المحمية).نوضح ثغرات أداء وا سعة عبر الفئات الديموغرافية وإظهار أن نماذج اللغة المسبقة مسبقا تكافح المتحدثين ذكور الشباب غير الأبيض؛على سبيل المثال، لا تعلم نماذج اللغة المحددة مسبقا تعلم التحيزات الاجتماعية (الجمعيات النمطية) - تعلم النماذج اللغوية المحددة أيضا التحيزات الاجتماعية، وتعلم التحدث أكثر شيئين أكثر من مثل الآخرين.ومع ذلك، نوضح أنه، باستثناء نماذج بيرت، تخفض نماذج اللغة الأكبر المحددة مسبقا بعض فجوات الأداء بين الأغلبية والأقليات.
نقدم Bertweetfr، أول نموذج لغوي مدرب مسبقا على نطاق واسع للتغريدات الفرنسية.يتم تهيئ نموذجنا باستخدام نموذج اللغة الفرنسية المجال للمجال Camembert الذي يتبع بنية Base Bert.تظهر التجارب أن Bertweetfr Outperforms جميع نماذج اللغة الفرنسية العامة في الم جال السابق على اثنين من مهام Twitter Twitter من Twitter من تحديد الاجثافية التعرف على الكيان المسمى.تم إنشاء DataSet المستخدمة في مهمة كشف الاجزاسية أولا وشروحة من قبل فريقنا، وملء فجوة هذه البيانات التحليلية في الفرنسية.نجعل نموذجنا متاحا علنا في مكتبة المحولات بهدف تعزيز البحث في المستقبل في المهام التحليلية للتغريدات الفرنسية.
في حين أن النماذج اللغوية المدربة مسبقا (PLMS) هي محلول الذهاب لمعالجة العديد من مشاكل معالجة اللغة الطبيعية، فإنها لا تزال محدودة للغاية في قدرتها على التقاط ومعرفة المعيشية المشتركة. في الواقع، حتى إذا كانت المعلومات متوفرة في شكل قواعد منطقية تقري بية (ناعمة)، فليس من الواضح كيفية نقلها إلى PLM من أجل تحسين أدائها لمهام التفكير الاستنتاجي. هنا، نهدف إلى سد هذه الفجوة من خلال تدريس PLMS كيفية التفكير مع قواعد القرن الناعمة. نقدم مهمة التصنيف حيث، بالنظر إلى الحقائق والقواعد الناعمة، يجب أن تعيد PLM التنبؤ باحتمال فرضية معينة. نقوم بإصدار بيانات البيانات الأولى لهذه المهمة، ونقترح وظيفة الخسارة المنقحة التي تمكن PLM لتعلم كيفية التنبؤ بحتميات دقيقة للمهمة. تظهر نتائج التقييم الخاصة بنا أن النماذج الناتجة عن القسرية تحقق أداء عال للغاية، حتى على القواعد المنطقية التي كانت غير مرئية في التدريب. علاوة على ذلك، فإننا نوضح أن المفاهيم المنطقية التي أعربنا عنها القواعد يتم نقلها إلى النموذج الدقيق، مما يؤدي إلى نتائج أحدث النتائج على مجموعات البيانات الخارجية.
تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة ،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا