ترغب بنشر مسار تعليمي؟ اضغط هنا

أنظمة IMS لمهمة ترجمة الكلام منخفضة الموارد IWSLT 2021

IMS' Systems for the IWSLT 2021 Low-Resource Speech Translation Task

701   1   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توضح هذه الورقة التقديم إلى المهمة المشتركة لخطوط خطاب IWSLT 2021 من قبل فريق IMS.نستخدم النماذج الحديثة من النماذج المشتركة مع العديد من أساليب تكبير البيانات ومتعدد المهام والنقل مناهج للتعرف على الكلام التلقائي (ASR) وخطوات الترجمة الآلية (MT) لنظامنا المتتالي.علاوة على ذلك، فإننا نستكشف أيضا جدوى نموذج ترجمة خط الكلام (ST) بالكامل في حالة كمية مقيدة للغاية من الحقيقة الأرضية المصنفة.يحقق أفضل نظامنا أفضل أداء بين جميع الأنظمة المقدمة للسواحيلية للإنجليزية والفرنسية مع درجات بلو 7.7 و 13.7 على التوالي، وثاني أفضل نتيجة للسواحيلية السواحلية إلى الإنجليزية مع النتيجة بلو 14.9.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف الورقة أنظمة ترجمة الكلام (ST) ولكن الإنجليزية إلى الألمانية. وهي تستند إلى نماذج الترجمة الآلية المعرونة التي تم تدريبها بشكل مشترك. يتم تقييم أدائها على مجموعة اختبار MUSTC المشتركة. في هذا العمل، ندرس كفاءتها من وجهة نظر وجود كمية كبيرة من بيا نات التدريب ASR المنفصلة وبيانات التدريب MT، وكمية أصغر من بيانات التدريب على الكلام. يتم استخدام كميات كبيرة من البيانات التدريبية ASR و MT لتدريب نماذج ASR و MT مسبقا. يتم استخدام بيانات الترجمة من الكلام لتحسين نماذج ASR-MT بشكل مشترك عن طريق تحديد مسار قابل للتطبيق من الكلام من الكلام إلى الترجمات. لهذا الغرض، نستخدم التمثيلات المستمرة الداخلية من وحدة فك ترميز ASR كدخل إلى وحدة MT. نظرا لأن ترجمة الكلام يمكن تحسينها من خلال تدريب وحدة فك الترميز العادية بالاشتراك مع وحدة MT-Module باستخدام كمية كبيرة من بيانات التدريب فقط MT فقط. نعرض أيضا تحسينات كبيرة من خلال تدريب وحدة ASR القادرة على توليد نص مخلوق، بدلا من مغادرة مهمة علامات الترقيم إلى وحدة MT.
توضح هذه الورقة تقديم نظام الترجمة من Niutrans End-tou-end الكلام للمهمة غير المتصلة IWSLT 2021، والتي تترجم من الصوت الإنجليزي إلى النص الألماني مباشرة دون نسخ متوسط.نحن نستخدم الهندسة المعمارية النموذجية القائمة على المحولات وتعزيزها عن طريق مطابقة ، ترميز الموضع النسبي، والترميز الصوتية والترميز النصي مكدسة.لزيادة بيانات التدريب، يتم ترجم نسخ اللغة الإنجليزية إلى الترجمات الألمانية.أخيرا، نحن نوظف فك تشفير الفرقة لدمج التنبؤات من عدة نماذج مدربة مع مجموعات البيانات المختلفة.الجمع بين هذه التقنيات، نحقق 33.84 نقطة بلو على مجموعة اختبار EN-DE MUST-C، والتي تظهر الإمكانات الهائلة لنموذج نهاية إلى نهاية.
في هذه الورقة، وصفنا تقديم جامعة تشجيانغ إلى مهمة ترجمة الكلام متعددة اللغات IWSLT2021.تركز هذه المهمة على بحث ترجمة الكلام (ST) عبر العديد من لغات المصدر غير الإنجليزية.يمكن للمشاركين أن يقرروا ما إذا كانوا سيعملون على أنظمة مقيدة أو أنظمة غير مقيدة يمكنها استخدام البيانات الخارجية.نقوم بإنشاء أنظمة مقيدة للترجمة المتتالية والإنغانية في النهاية، باستخدام البيانات المقدمة فقط.في النهج المتتالي، نجمع بين التعرف على الكلام التلقائي في المطابقة (ASR) مع الترجمة الآلية العصبية القائمة على المحولات (NMT).تستخدم أنظمة الترجمة المباشرة المناسبة للكلام المباشرة في تشفير الأساس ومكتشف متعددة المهام.تم فركة الأنظمة المقدمة من قبل نماذج متتالية مختلفة.
تصف هذه الورقة Kit'SubImission إلى مهمة ترجمة الكلام IWSLT 2021 دون اتصال بالإنترنت.وصفنا نظاما في كل من الحالة المتتالية وحالة نهاية إلى النهاية.في الحالة المتتالية، حققنا في معماريات مختلفة من نهاية إلى نهاية لوحدة التعرف على الكلام.لوحدة تجزئة الن ص، قمنا بتدريب نموذج صغير يستند إلى محول على بيانات أحادية الجودة عالية الجودة.لوحدة الترجمة، تم إعادة استخدام نموذج الترجمة العصبي في العام الماضي.في حالة نهاية إلى نهاية، فقد قمنا بتحسين بنية محولات الخطاب النسبية للوصول أو حتى تجاوز نتيجة نظام Cascade.
توضح هذه الورقة تقديم IWSLT-St المجموعة ESPNET-St Group في مسار ترجمة الكلام دون اتصال بالإنترنت. لقد بذلنا هذا العام جهود مختلفة على تدريب البيانات والهندسة المعمارية وتجزئة الصوت. على جانب البيانات، التحقق في تقطير المعرفة على مستوى التسلسل (SEQKD) لترجمة خطاب نهاية إلى نهاية (E2E). على وجه التحديد، استخدمنا SEQKD متعدد المراجع من المعلمين المتعددين المدربين على كميات مختلفة من BiteXT. في جانب الهندسة المعمارية، اعتمكنا من تشفير المطابقة والهندسة المعمارية متعددة اللمعان، والذي يزود بكوادر مخصصة للتعرف على الكلام ومهام الترجمة في نموذج ترميز الترميز الموحد وتمكن البحث في كل من المساحات المصدر والجلد المستهدف أثناء الاستدلال. نحن أيضا تحسين تجزئة الصوت باستخدام مجموعة أدوات Pyannote.Audio ودمج قطاعات قصيرة متعددة للنمذجة ذات السياق الطويل. أظهرت التقييمات التجريبية أن كل منهم ساهم في تحسينات كبيرة في أداء الترجمة. مجتمع أفضل نظام E2E لدينا بجميع التقنيات المذكورة أعلاه مع مجموعة نموذجية وحققت 31.4 بلو في المرجع 2- TST2021 و 21.2 بلو و 19.3 بلو على المراجع الفردية من TST2021.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا