ترغب بنشر مسار تعليمي؟ اضغط هنا

FST: نظام ترجمة الكلام العادلة للمهمة المشتركة متعددة اللغات IWSLT21

FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task

422   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نصف نظام ترجمة الكلام متعددة اللغات نهاية إلى نهاية المقدمة إلى حملة تقييم IWSLT 2021 في مهمة مشتركة من خطابات الكلام متعددة اللغات. بنيت نظامنا من خلال الاستفادة من التعلم النقل عبر الطرائق والمهام واللغات. أولا، نحن نستفيد الوحدات متعددة اللغات للأغراض العامة مسببة اللغات مع كميات كبيرة من البيانات غير المسماة والمصدرة. ونحن كذلك تمكين نقل المعرفة من مهمة النص إلى مهمة خطاب من خلال التدريب بمهامتين بالاشتراك. أخيرا، يتم تصوير نموذجنا متعدد اللغات في البيانات الخاصة ببيانات المهام الخاصة بترجمة الكلام لتحقيق أفضل نتائج الترجمة. تظهر النتائج التجريبية أن نظامنا يتفوق على الأنظمة المبلغ عنها، بما في ذلك النهج القائمة على المناسبة والمتوسطة، بتهامش كبير. في بعض اتجاهات الترجمة، تعد نتائج ترجمة الكلام التي تم تقييمها على مجموعة اختبار TEDX متعددة اللغات متعددة اللغات مقارنة مع تلك الموجودة من نظام ترجمة نصية قوية للنص، والذي يستخدم النصوص أوراكل الكلام كإدخال.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة مشاركة جامعة ماستريخت في مسار الترجمة متعددة اللغات في IWSLT 2021.المهمة في هذه المسار هي بناء أنظمة ترجمة خطاب متعددة اللغات في اتجاهات تحت إشراف ومطلة الصفر.نظامنا الأساسي هو نموذج نهاية إلى نهاية يؤدي إلى نسخ الكلام والترجمة.نلاحظ أ ن التدريب المشترك للمهامتين مكملتين خاصة عندما تكون بيانات ترجمة الكلام نادرة.على المصدر والجانب المستهدف، نستخدم تكبير البيانات والملصقات الزائفة على التوالي لتحسين أداء أنظمتنا.نقدم أيضا تقنية كفرية تعمل باستمرار على تحسين جودة النسخ والترجمات.تظهر التجارب أن النظام المنتهي تنافسية مع نظيره المتتالي وخاصة في ظروف الطلقة الصفرية.
يصف هذا التقرير أن أنظمة ترجمة آلات Microsoft للمهمة المشتركة WMT21 على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع.شاركنا في مسارات التقييم الثلاثة بما في ذلك المسار الكبير والمسارين الصغيرين حيث لا يتم حدوث المرء السابق وأن الأخيران مقيدان تماما. تم تهيئة الطلبات النموذجية الخاصة بنا إلى المهمة المشتركة مع Deltalm، وهو نموذج فك ترميز ترميز متعدد اللغز متعدد اللغات مسبقا، ويتم ضبطه بشكل جيد في المقابل مع البيانات الموازية المستديرة ومصادر البيانات المسموح بها وفقا لإعدادات المسار، جنبا إلى جنب مع تطبيق التعلم التدريجي والتكرارمناهج الترجمة الخلفية لمزيد من تحسين الأداء.تم تصنيف التقديمات النهائية لدينا في المرتبة الأولى على ثلاثة مسارات من حيث مقياس التقييم التلقائي.
تحتوي هذه الورقة على وصف لتقديم معهد Karlsruhe للتكنولوجيا (KIT) لمهمة ترجمة TEDX متعددة اللغات في حملة تقييم IWSLT 2021.نهجنا الرئيسي هو تطوير كل من النظم المتتالية ونظم نهاية إلى نهاية وتجمع بينها في نهاية المطاف لتحقيق أفضل النتائج الممكنة لهذا ال إعداد المنخفض للغاية الموارد.يؤكد التقرير أيضا تحسين بعض التحسن المعماري المتسق إضافته إلى بنية المحولات، لجميع المهام: ترجمة الترجمة والنسخ والنطق.
في هذه الورقة، وصفنا تقديم جامعة تشجيانغ إلى مهمة ترجمة الكلام متعددة اللغات IWSLT2021.تركز هذه المهمة على بحث ترجمة الكلام (ST) عبر العديد من لغات المصدر غير الإنجليزية.يمكن للمشاركين أن يقرروا ما إذا كانوا سيعملون على أنظمة مقيدة أو أنظمة غير مقيدة يمكنها استخدام البيانات الخارجية.نقوم بإنشاء أنظمة مقيدة للترجمة المتتالية والإنغانية في النهاية، باستخدام البيانات المقدمة فقط.في النهج المتتالي، نجمع بين التعرف على الكلام التلقائي في المطابقة (ASR) مع الترجمة الآلية العصبية القائمة على المحولات (NMT).تستخدم أنظمة الترجمة المباشرة المناسبة للكلام المباشرة في تشفير الأساس ومكتشف متعددة المهام.تم فركة الأنظمة المقدمة من قبل نماذج متتالية مختلفة.
توضح هذه الورقة تقديم نظام الترجمة من Niutrans End-tou-end الكلام للمهمة غير المتصلة IWSLT 2021، والتي تترجم من الصوت الإنجليزي إلى النص الألماني مباشرة دون نسخ متوسط.نحن نستخدم الهندسة المعمارية النموذجية القائمة على المحولات وتعزيزها عن طريق مطابقة ، ترميز الموضع النسبي، والترميز الصوتية والترميز النصي مكدسة.لزيادة بيانات التدريب، يتم ترجم نسخ اللغة الإنجليزية إلى الترجمات الألمانية.أخيرا، نحن نوظف فك تشفير الفرقة لدمج التنبؤات من عدة نماذج مدربة مع مجموعات البيانات المختلفة.الجمع بين هذه التقنيات، نحقق 33.84 نقطة بلو على مجموعة اختبار EN-DE MUST-C، والتي تظهر الإمكانات الهائلة لنموذج نهاية إلى نهاية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا