ترغب بنشر مسار تعليمي؟ اضغط هنا

تقييم DIACHRONIC للاخلار بين الجنسين في طرد

A diachronic evaluation of gender asymmetry in euphemism

315   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

استخدام الوعود هو سائق معروف لتغيير اللغة. وقد اقترح أن تستخدم النساء النساء أكثر من الرجال. على الرغم من وجود العديد من الدراسات التي تحقق في الاختلافات بين الجنسين في اللغة، إلا أن المطالبة المتعلقة باستخدام الاستحمام لم يتم اختبارها بشكل شامل عبر الزمن. إذا كانت النساء يستخدمن اللفائف أكثر، فقد يعني ذلك أن النساء يقودن أيضا تكوين عمليات إفراطية جديدة وتغيير اللغة مع مرور الوقت. باستخدام أربعة نص شهير كوربورا كبيرة من اللغة الإنجليزية، نقيم الادعاء بأن النساء يستخدمن الزيادات أكثر من الرجال من خلال تحليل كمي. كنا قمنا بتجميع قائمة ب 106 أزواج من الطبع - المحرمات لتحليل استخدامها النسبي عبر الزمن من قبل كل جنس في Corga. على عكس الاعتقاد الحالي، تظهر نتائجنا أن النساء لا يستخدمن اللفائف ذات نسبة أعلى من الرجال. كررنا التحليل باستخدام قائمة فرعية مختلفة من قائمة الأزواج من الادعاء-المحرمات ووجدت أن النتيجة كانت قوية. تشير دراستنا إلى أنه في مجموعة واسعة من الإعدادات التي تنطوي على كل من الخطاب والكتابة، ومع درجات متفاوتة من الأشكال، لا تستخدم النساء أو تشكيل الزيادات أكثر من الرجال.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تطبق الغالبية العظمى من الأساليب الحالية لتخصيص التصنيفات في تطبق Adgeddings Word لأنها أثبتت تجميع السياقات (بمعنى واسع) المستخرجة من النصوص التي تكفي إرفاق الكلمات الأيتام بالتصنيف.من ناحية أخرى، وبصرف النظر عن كونها الموارد الكبيرة المعجمية واللال لالية، فإن التصنيفات هي هياكل رسم بيانية.يمكن أن يكون الجمع بين تدمير Word مع هيكل الرسم البياني للتصنيف موضع التنبؤ بالتنبؤ بالعلاقات التصنيفية.في هذه الورقة، نقارن العديد من النهج لإرفاق كلمات جديدة بالتصنيف الموجود القائمة على تمثيلات الرسم البياني مع تلك التي تعتمد على ASTTEXT AGEDDINGS.نختبر جميع الأساليب على مجموعات البيانات الروسية والإنجليزية، ولكن يمكن تطبيقها أيضا على الكلمات واللغات الأخرى.
مع نشر نماذج اللغة بشكل متزايد في العالم الحقيقي، من الضروري معالجة مسألة نزاهة مخرجاتها. غالبا ما تعتمد كلمة تضمين تمثيلات نماذج اللغة هذه ضمنيا ارتباطات غير مرغوب فيها تشكل تحيزا اجتماعيا داخل النموذج. تطرح طبيعة اللغات بين الجنسين مثل الهندية مشكل ة إضافية في تقدير التحيز والتخفيف من التحيز، بسبب التغيير في شكل الكلمات في الجملة، بناء على جنس الموضوع. بالإضافة إلى ذلك، هناك أعمال متناثرة تتم في مجال أنظمة القياس والدولي لغات Instan. في عملنا، نحاول تقييم وتحديد التحيز بين الجنسين داخل نظام الترجمة الآلية الهندية-الإنجليزية. نقوم بتنفيذ إصدار تعديل من متري TGBI الموجود على أساس الاعتبارات النحوية له الهندية. قارننا أيضا وتتناقض مع قياسات التحيز الناتجة عن مقاييس متعددة للمظلات المدربة مسبقا وتلك التي تعلمتها نموذج الترجمة الآلي لدينا.
يمكن أن تسهم التحيزات المحتملة بين الجنسين الموجودة في محتوى ويكيبيديا في السلوكيات المتحيزة في مجموعة متنوعة من أنظمة NLP المصب.ومع ذلك، فإن الجهود المبذولة لفهم عدم المساواة في تصوير النساء والرجال تحدث في ويكيبيديا ركزت حتى الآن فقط على السيرة الذ اتية *، مما يترك سؤالا عن عدد المرات التي تحدث فيها مثل هذه الأنماط الضارة في مواضيع أخرى.في هذه الورقة، نحقق في عدم التباين المرتبطة بنوع الجنس في عناوين ويكيبيديا من * جميع المجالات *.نقوم بتقييم أنه لمدة نصف المقالات المرتبطة بنوع الجنس، أي مقالات مع كلمات مثل * المرأة * أو * ذكر * في ألقابه، نظيرات متناظرة تصف نفس مفهوم الجنس الآخر (وبشكل بوضوح قائلا في عناوينهم)وبعدمن بين القضايا المعالجة المتبقية، فإن الغالبية العظمى من المقالات تتعلق بالمشكلات الرياضية والاجتماعية ذات الصلة.نحن نقدم نظرة ثاقبة حول كيفية التأثير على هذه عدم التماثل في مكونات ويكيبيديا الأخرى واقتراح الخطوات نحو تقليل تواتر الأنماط المرصودة.
أخبار وهمية تسبب أضرارا كبيرة في المجتمع.للتعامل مع هذه الأخبار المزيفة، تم إجراء العديد من الدراسات حول نماذج كشف البناء وترتيب مجموعات البيانات.معظم مجموعات بيانات الأخبار المزيفة تعتمد على فترة زمنية محددة.وبالتالي، فإن نماذج الكشف المدربة على مثل هذه البيانات لديها صعوبة في اكتشاف الأخبار الرواية المزيفة الناتجة عن التغييرات السياسية والتغيرات الاجتماعية؛قد ينتج عنهم إخراج متحيز من المدخلات، بما في ذلك أسماء شخص معين وأسماء تنظيمية.نشير إلى هذه المشكلة كتحيز DIACHRONIC لأنه سبب تاريخ إنشاء الأخبار في كل مجموعة بيانات.في هذه الدراسة، نؤكد التحيز، وخاصة الأسماء المناسبة بما في ذلك أسماء الشخص، من انحراف مظاهر العبارة في كل مجموعة بيانات.بناء على هذه النتائج، نقترح طرق الاخفاء باستخدام Wikidata للتخفيف من تأثير أسماء الشخص والتحقق من صحة ما إذا كانوا يقومون بإجراء نماذج الكشف عن الأخبار وهمية قوية من خلال التجارب مع بيانات داخل المجال والخروج.
يؤثر البحث على الإنترنت على إدراك الناس في العالم، وبالتالي فإن التخفيف من التحيزات في نتائج البحث ونماذج التعلم العادلة أمر حتمي للجيدة الاجتماعية.نحن ندرس تحيز جنساني فريد من نوعه في البحث في الصورة في هذا العمل: غالبا ما تكون صور البحث في كثير من الأحيان عن النوع الاجتماعي لاستفسارات اللغة الطبيعية المحايدة بين الجنسين.نحن تشخيص طرازات بحث عن الصور النموذجية، النموذج المتخصص المدرب على مجموعات البيانات داخل المجال ونموذج التمثيل المعمم مسبقا على صورة واسعة بيانات النصية عبر الإنترنت.كلا النموذجين يعانون من التحيز بين الجنسين الحاد.لذلك، نقدم اثنين مناهج ديوان رواية: طريقة أخذ العينات المعدة المعالجة لمعالجة قضية عدم التوازن بين الجنسين للنماذج التدريبية، وميزة ما بعد المعالجة هي قاعدة أسلوب لقطة على المعلومات المتبادلة إلى تمثيلات Debias متعددة الوسائط للنماذج المدربة مسبقا.تجارب واسعة على معايير MS-COCO و FLICKR30K تظهر أن أساليبنا تقلل بشكل كبير من التحيز بين الجنسين في نماذج البحث عن الصور.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا