يصف هذا العمل تكيف نموذج تسلسل متطلب مسبقا بمهمة التحقق من المطالبة العلمية في المجال الطبي الطبيعي.نقترح نظام يسمى Vert5erini الذي يستغل T5 لاسترجاع الملخص واختيار الجملة وتنبؤ التسمية، وهي ثلاثة مهام فرعية حرجة للتحقق من الادعاء.نقوم بتقييم خط أنابيبنا في SCIFACT، وهي مجموعة بيانات مفيدة حديثا تتطلب نماذج لا تتوقع فقط عن صحة المطالبات ولكنها توفر أيضا جمل ذات صلة من كائن من الأدبيات العلمية التي تدعم التنبؤ.تجريبيا، يتفوق نظامنا على خط أساس قوي في كل من المهام الفرعية الثلاث.نعرض أيضا قدرة Vert5erini على التعميم لمجموعات بيانات جديدة من مطالبات CovID-19 باستخدام أدلة من Cord-19 Corpus.
This work describes the adaptation of a pretrained sequence-to-sequence model to the task of scientific claim verification in the biomedical domain. We propose a system called VerT5erini that exploits T5 for abstract retrieval, sentence selection, and label prediction, which are three critical sub-tasks of claim verification. We evaluate our pipeline on SciFACT, a newly curated dataset that requires models to not just predict the veracity of claims but also provide relevant sentences from a corpus of scientific literature that support the prediction. Empirically, our system outperforms a strong baseline in each of the three sub-tasks. We further show VerT5erini's ability to generalize to two new datasets of COVID-19 claims using evidence from the CORD-19 corpus.
المراجع المستخدمة
https://aclanthology.org/
نقدم نظرة عامة على المهمة المشتركة السكري، التي قدمت في ورشة عمل المعالجة بالوثائق العلمية الثانية (SDP) في Naacl 2021. وفي هذه المهمة المشتركة، قدمت النظم مطالبة علمية وجزح من ملخصات البحث، وطلب تحديد المقالات التي تدعمهاأو دحض المطالبة وكذلك توفير
توفر الجداول معرفة قيمة يمكن استخدامها للتحقق من العبارات النصية. في حين أن عددا من الأعمال قد نظر في التحقق من الحقائق القائم على الطاولة، فإن المحاذاة المباشرة للبيانات الجذابية مع الرموز في البيانات النصية نادرا ما توفرها. علاوة على ذلك، فإن تدريب
نقدم DataSet، Danfever، مخصص للبحث عن المعلومات الخاطئة متعددة اللغات.DataSet باللغة الدنماركية ولها نفس التنسيق مثل مجموعة بيانات الحمى الإنجليزية المعروفة.يمكن استخدامه للاختبار طرق في إعدادات متعددة اللغات، وكذلك لإنشاء الطرز في الإنتاج للغة الدنماركية.
نقدم طريقة عامة لحساب الدقة الملحة لتخفيف البيانات الناتجة عن الحد الأدنى من جهود المستخدم.نحن ننظر إلى Prob-Lem كهامة لفحص الحقائق للتحقق من مطالبات NU-Merical في النص.يفترض التحقق من Gorithm أن البيانات المستخدمة في الحصول على النص متاح.في هذه الور
توجد العديد من الطرق الرسمية المعتمدة Formal Methods لاختبار البروتوكولات الأمنية و كشف كونها آمنة أم لا. أهمها: أفيسبا Avispa، كاسبر Casper، بروفيرف ProVerif، سايثر Scyther. لقد تم التطرق سابقاً إلى تنفيذ مقارنات باستخدام طريقتين فقط من الطرق المذكو