ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم التعزيز التعويضي لإتقان مهارات متعددة وتعميم عبر البيئات في الألعاب القائمة على النصوص

Meta-Reinforcement Learning for Mastering Multiple Skills and Generalizing across Environments in Text-based Games

214   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن استخدام الألعاب القائمة على النصوص لتطوير وكلاء نص موجه نحو المهام لإنجاز المهام ذات التعليمات اللغوية رفيعة المستوى، والتي لها تطبيقات محتملة في المجالات مثل تفاعل الإنسان الروبوت. بالنظر إلى تعليمات نصية، يستخدم تعلم التعزيز عادة لتدريب الوكلاء لإكمال المهمة المقصودة بسبب راحتها في سياسات التعلم تلقائيا. ومع ذلك، بسبب مساحة كبيرة من الإجراءات النصية للكبار، تعلم شبكة السياسة التي تنشئ كلمة عمل من Word مع تعلم التعزيز أمر صعب. تظهر أعمال البحث الحديثة أن التعلم التقليد يوفر طريقة فعالة لتدريب شبكة السياسة القائمة على الجيل. ومع ذلك، فإن الوكلاء المدربين مع التعلم المقلم يصعب إتقان مجموعة واسعة من أنواع المهام أو المهارات، ومن الصعب عليهم التعميم أيضا مع البيئات الجديدة. في هذه الورقة، نقترح طريقة تعزز التعزيز التيلة لتدريب وكلاء النص من خلال التعلم إلى الاستكشاف. على وجه الخصوص، يستكشف وكيل النص أولا البيئة لجمع المعلومات الخاصة بالفصل، ثم تتكيف مع سياسة التنفيذ لحل المهمة مع هذه المعلومات. على ALFWorld المتاحة للجمهور، أجرينا دراسة مقارنة مع التعلم التقليد وإظهار تفوق طريقنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يوفر التعلم العميق التعلم نهجا واعدا للألعاب القائمة على النصوص في دراسة التواصل الطبيعي باللغة الطبيعية بين البشر والوكلاء الاصطناعي.ومع ذلك، لا يزال التعميم يمثل تحديا كبيرا حيث يعتمد الوكلاء بشكل خطير على تعقيد ومجموعة متنوعة من المهام التدريبية.ف ي هذه الورقة، نتعلم هذه المشكلة عن طريق إدخال إطار هرمي مبني على وكيل RL المعلق الرسم البياني المعلق.في المستوى العالي، يتم تنفيذ سياسة META لتحلل اللعبة بأكملها في مجموعة من المهام الفرعية المحددة بواسطة أهداف نصية، وحدد أحدها بناء على KG.ثم يتم تنفيذ سياسة فرعية في المستوى المنخفض لإجراء تعلم التعزيز المكيف للأهداف.نقوم بإجراء تجارب على الألعاب ذات مستويات صعوبة مختلفة وإظهار أن الطريقة المقترحة تتمتع بالتعميمات المواتية.
حاليا، تتلقى الترجمة متعددة اللغات الآلية أكثر اهتماما أكثر وأكثر لأنها تجلب أداء أفضل لغات الموارد المنخفضة (LRLS) وتوفر مساحة أكبر. ومع ذلك، فإن نماذج الترجمة متعددة اللغات الحالية تواجه تحديا شديدا: عدم التوازن. نتيجة لذلك، فإن أداء الترجمة من لغا ت مختلفة في نماذج الترجمة متعددة اللغات مختلفة تماما. نقول أن مشكلة الاختلال هذه تنبع من كفاءات التعليم المختلفة لغات مختلفة. لذلك، نحن نركز على تحقيق التوازن بين الكفاءات التعليمية لغات مختلفة واقتراح مناهج التعلم القائم على الكفاءة للترجمة الآلية متعددة اللغات، والتي تسمى CCL-M. على وجه التحديد، نقوم أولا بتحديد كفاءتين للمساعدة في جدولة لغات الموارد العالية (HRLS) ولغات المورد المنخفضة: 1) الكفاءة التي تم تقييمها ذاتيا، وتقييم مدى تعلم اللغة نفسها؛ 2) الكفاءة التي تم تقييمها HRLS، وتقييم ما إذا كانت LRL جاهزة للتعلم وفقا لخلاف HRLS الذي تم تقييمه الذاتي. استنادا إلى الكفاءات المذكورة أعلاه، نستخدم خوارزمية CCL-M المقترحة إضافة لغات جديدة تدريجيا في التدريب المحدد بطريقة تعلم المناهج الدراسية. علاوة على ذلك، نقترح استراتيجية أخذان رصاصة ديناميكية متوازنة من الكفاءة النووية لتحسين عينات التدريب بشكل أفضل في التدريب متعدد اللغات. تظهر النتائج التجريبية أن نهجنا حقق مكاسب أداء ثابتة وهامة مقارنة بالنهج السابق للدولة السابقة بشأن مجموعة بيانات محادثات تيد.
البناء التلقائي لقواعد المعرفة ذات الصلة (KBS) من النص، وتوليد نص مغزى من KBS هما أهداف طويلة الأمد في تعلم الآلات. في هذه الورقة، نقدم Regen، وهي جيل ثنائي الاتجاه من النص والرأس الرسم البياني الاستفادة من التعزيز لتعزيز الأداء. يتيح لنا الخطية الرس م البياني إعادة تأكيد المهام كسلسلة لتسليم توليد التسلسل بغض النظر عن الاتجاه الإداري، والذي يسمح بدوره لاستخدام التعزيز التعزيز لتدريب التسلسل حيث يعمل النموذج نفسه كناقد خاص به تدريب التسلسل (SCST). نقدم إجراء تحقيق واسع النطاق الذي يوضح أن استخدام RL عبر فوائد SCST Grape و جيل النص على Datasets Webnlg + 2020 و Tekgen. يوفر نظامنا نتائج حديثة على Webnlg + 2020 من خلال تحسين النتائج المنشورة بشكل كبير من تحدي Webnlg 2020+ لكل من مهام جيل الرسائل النصية إلى الرسم البيانية والرسوم البيانية. مزيد من التفاصيل في https://github.com/ibm/regen.
حتى الآن، اعتمدت معظم نماذج التلخيص المذهلة على متغيرات من احتمال السجل السلبي (NLL) كهدف تدريبهم. في بعض الحالات، تمت إضافة التعلم التعزيز لتدريب النماذج بهدف أقرب إلى تدابير التقييم الخاصة بهم (مثل Rouge). ومع ذلك، فإن وظيفة المكافآت التي سيتم استخ دامها في نهج التعلم التعزيز يمكن أن تلعب دورا رئيسيا للأداء ولا يزال غير مستكشفة جزئيا. لهذا السبب، في هذه الورقة، نقترح اثنين من وظائف المكافأة لمهمة التلخيص الجماعي: الوظيفة الأولى، المشار إليها باسم RWB-Hinge، يختار ديناميكيا العينات لتحديث التدرج. الوظيفة الثانية، الملقب بالمخاطر، يرفع مجموعة صغيرة من المرشحين القويين لإبلاغ المكافأة. في التجارب، نجري النهج المقترح من خلال ضبط النموذج المدرب مسبقا من NLL أكثر من تسع مجموعات بيانات ملخصة من الحجم والطبيعة المتنوعة. تظهر النتائج التجريبية تحسنا ثابتا على خطوط خطوط الأساسيات المحدودة السلبية.
تهدف استخراج العلاقات المنخفضة الموارد (LRE) إلى استخراج حقائق العلاقة من كورسا محدودة المسمى عندما تشريح الإنسان نادرة. تعمل الأعمال الموجودة إما استخدام مخطط التدريب الذاتي لتوليد ملصقات زائفة ستتسبب في مشكلة الانجراف التدريجي، أو نظام التعلم التلو ي الاستفادي الذي لا يتطلب التغيلات بشكل صريح. لتخفيف التحيز الاختيار بسبب عدم وجود حلقات ردود الفعل في نماذج التعلم الحالية، قمنا بتطوير طريقة تعليمية لتعزيز التعزيز التدرج لتشجيع بيانات الملصقات الزائفة لتقليد اتجاه نزول التدرج على البيانات المسمى و Bootstrap إمكانية التحسين من خلال التجربة والخطأ. نقترح أيضا إطارا يسمى Gradlre، الذي يتعامل مع سيناريوهات رئيسيين في استخراج علاقة الموارد المنخفضة. إلى جانب السيناريو حيث تكون البيانات غير المسبقة كافية، يتعامل Gradlre الموقف حيث لا تتوفر بيانات غير قابلة للتحقيق، من خلال استغلال طريقة تكبير سياقيا لتوليد البيانات. النتائج التجريبية على مجموعات بيانات عامة تثبت فعالية الخريجين في استخراج العلاقات المنخفضة للموارد عند مقارنة مع الأساس.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا