ترغب بنشر مسار تعليمي؟ اضغط هنا

تحديد أهمية تداخل المحتوى للحصول على تعيينات تضمين أفضل عبر اللغات

Identifying the Importance of Content Overlap for Better Cross-lingual Embedding Mappings

238   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذا العمل، نقوم بتحليل أداء وخصائص نماذج تضمين الكلمة المتبقية التي تم إنشاؤها بواسطة أساليب المحاذاة المستندة إلى تعيين الخرائط.نحن نستخدم العديد من التدابير الخاصة بالجور وضمان التشابه للتنبؤ بعشرات BLI من تعيينات تضمين التضمين عبر اللغات على ثلاثة أنواع من كوربورا وثلاث أساليب تضمين و 55 زوجا للغة.تؤكد نتائجنا التجريبية على أنها بدلا من مجرد حجم، فإن مقدار المحتوى المشترك في Training Corpora ضروري.تتجلى هذه الظاهرة في ذلك) على الرغم من أحجام كوربوس الأصغر، باستخدام الأجزاء المقارنة فقط من ويكيبيديا لتدريب مساحات تضمين الأحادية المهتملة غالبا ما تكون أكثر فعالية من الاعتماد على جميع محتويات ويكيبيديا، 2) أصغر، في المقابلتعمل Wikipedia الأقل متنوعة في ويكيبيديا دائما أفضل بكثير كدولة تدريبية لتعيينات ثنائية اللغة من ويكيبيديا الإنجليزية المستخدمة في كل مكان.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يعرض عدم وجود بيانات تدريبية تحديا كبيرا لتحجيم فهم اللغة المنطوقة لغات الموارد المنخفضة.على الرغم من أن نهج تكبير البيانات المختلفة قد اقترحت توليف البيانات التدريبية في لغات مستهدفة منخفضة الموارد، فإن مجموعات البيانات المعززة غالبا ما تكون صاخبة، وبالتالي تعيق أداء نماذج SLU.في هذه الورقة نركز على تخفيف الضوضاء في البيانات المعززة.نقوم بتطوير نهج تدريب Denosising.يتم تدريب نماذج متعددة مع البيانات التي تنتجها الطرق المعززة المختلفة.توفر هذه النماذج إشارات الإشراف لبعضها البعض.تظهر النتائج التجريبية أن أسلوبنا تتفوق على الحالة القائمة من الفن الموجودة بمقدار 3.05 و 4.24 نقطة مئوية عن مجموعات بيانات قياسية على التوالي.سيتم تقديم الرمز مفتوح المصادر على جيثب.
تكييف ترتيب الكلمات من لغة واحدة إلى أخرى هو مشكلة رئيسية في التنبؤ المنظم عبر اللغات.تشفير الجملة الحالية (على سبيل المثال، RNN، محول مع تضيير الموقف) هي عادة ترتيب الكلمة الحساسة.حتى مع وجود تمثيلات نموذج موحدة (MUSE، MBERT)، قد تؤذي تناقضات ترتيب الكلمات التكيف مع النماذج.في هذه الورقة، نبني نماذج التنبؤ الهيكلية بمدخلات كيس من الكلمات، وإدخال وحدة إعادة ترتيب جديدة لتنظيم الكلمات بعد ترتيب لغة المصدر، والذي يتعلم استراتيجيات إعادة ترتيب محددة المهام من نموذج تنبئ النظام للأغراض العامة.تظهر التجارب على تحليل التبعية المتبادلة الصفرية وعلامات نقاط البيع، والعلامات المورفولوجية أن طرازنا يمكن أن يحسن بشكل كبير من أداء اللغات المستهدفة، وخاصة لغات بعيدة عن اللغة المصدر.
تعتبر Adgedding Word ضرورية لنماذج الشبكة العصبية لمختلف مهام معالجة اللغة الطبيعية. نظرا لأن كلمة تضمينها عادة ما يكون لها حجم كبير، من أجل نشر نموذج شبكة عصبي وجوده على أجهزة Edge، يجب ضغطه بشكل فعال. كانت هناك دراسة لاقتراح طريقة تقريبية منخفضة رت بة بلوك من أجل تضمين كلمة، تسمى GroupReduce. حتى لو كان هيكلهم فعالا، فإن الخصائص وراء مفهوم برنامج تضمين الكلمة الحكيمة غير الحكيمة لم يتم استكشافه بما فيه الكفاية. بدافع من هذا، نحن نحسن Grouppreduce من حيث ترجيح الكلمة والهيت. بالنسبة للتوزيع النصي، نقترح طريقة بسيطة ولكنها فعالة مستوحاة من مصطلح طريقة تردد المستندات العكسية في التردد وطريقة تامة بناء عليهم، نبني كلمة تمييزية تضمين خوارزمية ضغط. في التجارب، نوضح أن الخوارزمية المقترحة تجد بشكل أكثر فعالية أوزان الكلمات أكثر من المنافسين في معظم الحالات. بالإضافة إلى ذلك، نوضح أن الخوارزمية المقترحة يمكن أن تتصرف مثل إطار من خلال التعاون الناجح مع الكمي.
تزيين الكلمات المتبقية كلمة (CLWES) ترميز الكلمات من لغتين أو أكثر في مساحة مشتركة عالية الأبعاد التي تمثل ناقلات تمثل الكلمات ذات معنى مماثل (بغض النظر عن اللغة) عن كثب. تعلم الأساليب الحالية لبناء تعيينات CLWES عالية الجودة التي تقلل من وظيفة خسارة المعايير ℓ2. ومع ذلك، فقد ثبت أن هدف التحسين هذا هو حساسا للقيم المتطرفة. بناء على قاعدة مانهاتن الأكثر قوة (AKA. ℓ1 NORM) معيار الجيدة، تقترح هذه الورقة خطوة بسيطة بعد المعالجة لتحسين CLWES. ميزة هذا النهج هي أنه غير ملائم تماما للعملية التدريبية للفقر الأصلي ويمكن تطبيقها على نطاق واسع. يتم إجراء تجارب واسعة النطاق التي تنطوي على عشرة لغات متنوعة وموظفة مدربة على شريعة مختلفة. تظهر نتائج التقييم المستندة إلى تحريض المعجم الثنائي اللغة والتحويل عبر اللغات لمهام الاستدلال باللغة الطبيعية أن الصقل ℓ1 يتفوق بشكل كبير على أربعة خطوط خطوط خطوط خطوط أخرى في كل من الإعدادات الإشرافية غير المشرف. لذلك يوصى باعتماد هذه الاستراتيجية كمعيار لأساليب CLWE.
حققت المحولات التي تم تدريبها مسبقا على شركة متعددة اللغات، مثل MBERT و XLM-ROBERTA، قدرات نقل متبقية مثيرة للإعجاب. في إعداد نقل الطلقة الصفرية، يتم استخدام بيانات التدريب الإنجليزية فقط، ويتم تقييم النموذج الدقيق على لغة مستهدفة أخرى. على الرغم من أن هذا يعمل بشكل جيد بشكل مدهش، فقد تمت ملاحظة تباين كبير في الأداء اللغوي المستهدف بين مختلف عمليات التشغيل الدقيقة، وفي إعداد الطلقة الصفرية، لا توجد بيانات تطوير اللغة المستهدفة متاحة للتحديد بين نماذج متعددة ذات الضبط. اعتمد العمل المسبق على بيانات Dev الإنجليزية لتحديد بين النماذج التي تم ضبطها بشكل جيد مع معدلات التعلم المختلفة وعدد الخطوات وغيرها من أنواع التشعبات، والتي غالبا ما تؤدي إلى اختيارات فرعية نفسها. في هذه الورقة، نوضح أنه من الممكن تحديد نماذج أفضل باستمرار عند توفر كميات صغيرة من البيانات المشروحة بلغات محورية إضافية. نقترح نهجا للتعلم الآلي للاختيار النموذجي الذي يستخدم التمثيلات الداخلية للأنظمة ذات الطراز الدقيق للتنبؤ بقدراتها المتبادلة. في تجارب شاملة، نجد أن هذه الطريقة تختار باستمرار نماذج أفضل من بيانات التحقق من صحة اللغة الإنجليزية عبر عشرين لغة (بما في ذلك 8 لغات منخفضة الموارد)، وغالبا ما تحقق النتائج التي تتميز باختيار نموذج باستخدام بيانات تطوير اللغة المستهدفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا