ترغب بنشر مسار تعليمي؟ اضغط هنا

تقديم إجراءات الماوس إلى الترجمة الآلية العصبية التفاعلية

Introducing Mouse Actions into Interactive-Predictive Neural Machine Translation

363   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تحسنت جودة الترجمات التي تم إنشاؤها بواسطة أنظمة الترجمة الآلية (MT) بشكل كبير خلال السنوات، لكننا لا نزال بعيدا للحصول على ترجمات عالية الجودة التلقائية بالكامل.لتوليدهم والمترجمين يستفيدون من أدوات الترجمة المساعدة بمساعدة الكمبيوتر وبينها نجد أنظمة الترجمة الآلية التفاعلية (IPMT).في هذه الورقة، نستخدم ملاحظات الحساب على أنها المعلومات الرئيسية والوحيدة اللازمة لإنشاء تنبؤات جديدة تصحح الترجمات السابقة.يقلل تطبيق ملاحظات الحساب بشكل كبير من عدد الكلمات التي يحتاجها المترجم إلى كتابة جلسة IPMT.في الختام واستخدام هذه التقنية يوفر وقتا مفيدا وجهده للمترجمين وتحسين أدائها مع التقدم المستقبلي في MT وهكذا نوصي بتطبيقها في أنظمة IPMT الفعلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الترجمة التنبؤية التفاعلية هي عملية تكرارية تعاونية وحيث تنتج مترجمات البشر الترجمات بمساعدة أنظمة الترجمة الآلية (MT) بشكل تفاعلي. توجد تقنيات أخذ العينات المختلفة في التعلم النشط (AL) لتحديث نموذج MT (NMT) العصبي في السيناريو التفاعلي التنبؤ بالتنب ؤ. في هذه الورقة، نستكشف مصطلح مقرها (NEC Count Entity Content (NEC) والجودة (تقدير الجودة (QE) وتقنيات الإشارة (SIM) (SIM)) - والتي تستخدم للعثور على المرشحين المثاليين من البيانات الواردة - للإشراف البشري وتحديث الوزن نموذج MT. نفذنا تجارب مع ثلاث أزواج ولغوية وبيزن. الألمانية-العربية والإسبانية والإنجليزية والهندية الإنجليزية. تنتج تقنية أخذ العينات المقترحة لدينا 1.82 و 0.77 و 0.81 نقطة من نقاط بلو للغة الألمانية والإنجليزية والإسبانية والإنجليزية والإنجليزية والإنجليزية على التوالي وعلى أساس الأساس الأساسي في أخذ العينات العشوائية. كما أنه يحسن الوضع الحالي بمقدار 0.35 و 0.12 نقطة بلو للألمانية والإنجليزية والإسبانية والإنجليزية على التوالي. يحسن جهود التحرير البشري من حيث عدد الكلمات المتغيرة أيضا بنسبة 5 و 4 نقاط للألمانية والإنجليزية والإسبانية والإنجليزية على التوالي ومقارنة مع أحدث من بين الفن.
من الصعب للغاية ترجمة لغات Dravidian، مثل Kannada و Tamil، على ترجمة النماذج العصبية الحديثة.ينبع هذا من حقيقة أن هذه اللغات غنية بالمثل للغاية بالإضافة إلى توفير الموارد منخفضة الموارد.في هذه الورقة، نركز على تجزئة الكلمات الفرعية وتقييم الحد من الم فردات الدوافع اللغوية (LMVR) مقابل الجملة الأكثر استخداما (SP) لمهمة الترجمة من اللغة الإنجليزية إلى أربعة لغات Dravidian مختلفة.بالإضافة إلى ذلك، نحقق في حجم المفردات الفرعية المثلى لكل لغة.نجد أن SP هو الخيار الأكثر شمولا للتجزئة، وأن أحجام القاموس الأكبر تؤدي إلى جودة الترجمة الأعلى.
تعمل العديد من نماذج NLP على تسلسل الرموز الرموز الفرعية التي تنتجها قواعد التزخم المصنوعة يدويا وخوارزميات التعريفي للكلمة الفرعية.بديل عالمي بسيط هو تمثيل كل نص محوسب كسلسلة من البايتات عبر UTF-8، وضبط الحاجة إلى طبقة تضمين نظرا لأن هناك عدد أقل من أنواع الرمز المميز (256) من الأبعاد.من المستغرب، استبدال طبقة التضمين في كل مكان بتمثيلات ساخنة لكل بايت لا تؤذي الأداء؛تظهر التجارب في الترجمة الآلية بايت إلى بايت من الإنجليزية إلى 10 لغات مختلفة تحسنا ثابتا في بلو، ومستوى الطابع المتنافس وحتى نماذج مستوى الكلمات الفرعية القياسية.يكشف التحقيق الأعمق أن مزيج من نماذج تضمينه مع ترميز مفاتيح المدخلات بمبالغ الرمز إلى التسرب الرمزي، والذي يفيد نماذج بايت إلى بايت بشكل خاص.
الترجمة الآلية تؤدي الترجمة الآلية من لغة طبيعية إلى أخرى. تكمن ترجمة الآلات العصبية بمهارة أحدث في الترجمة الآلية، لكنها تتطلب بيانات تدريبية كافية، وهي مشكلة شديدة لترجمة أزواج لغة الموارد المنخفضة. يتم تقديم مفهوم Multimodal في الترجمة الآلية العص بية (NMT) عن طريق دمج الميزات النصية مع ميزات مرئية لتحسين ترجمة الزوج منخفض الموارد. WAT2021 (ورشة العمل حول الترجمة الآسيوية 2021) تنظم مهمة مشتركة من الترجمة متعددة الوسائط للإنجليزية إلى الهندية. لقد شاركنا نفس الشيء مع اسم الفريق CNLP-NITS-PP في طلبين: متعددة الوسائط والنصية فقط NMT. يحقق هذا العمل في حقن أزواج العبارة عن طريق نهج تكبير البيانات ويحمل تحسين عملنا السابق في Wat2020 في نفس المهمة في كل من NMT النصي فقط و Multimodal NMT. لقد حققنا المرتبة الثانية على مجموعة اختبار التحدي للغة الإنجليزية إلى الهندية الترجمة متعددة الوسائط حيث تقييم ثنائي اللغة من النتيجة 39.28، درجة التقييم البدياسية بديهية سهلة الاستخدام (RIBES) 0.792097، ومقاييس كفاية الطلاقة (AMFM) 0.830230 على التوالي وبعد
تقدم الورقة تجارب في الترجمة الآلية العصبية مع القيود المعجمية في لغة غنية مورمية.على وجه الخصوص، نقدم طريقة واستنادا إلى فك التشفير المقيد والتي تتعامل مع الأشكال المصدرة للإدخالات المعجمية ولا تتطلب أي تعديل بيانات التدريب أو الهندسة المعمارية النم وذجية.لتقييم فعاليتها ونقوم بإجراء تجارب في سيناريوهات مختلفة: عام ومخصص خاص.قارنا طريقنا مع ترجمة خط الأساس، وهي ترجمة بدون قيود معجمية ومن حيث سرعة الترجمة وجودة الترجمة.لتقييم مدى جودة معالجة القيود ونقترح مقاييس تقييم جديدة تأخذ في الاعتبار وجود وتنسيب وازدواجية وصحة الانهيار المصطلحات المعجمية في جملة الإخراج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا