عادة ما يتم تدريب نماذج الترجمة الآلية العصبية (NMT) باستخدام فقدان انتروبيا Softmax حيث يتم مقارنة توزيع SoftMax بالملصقات الذهبية. في سيناريوهات منخفضة الموارد ونماذج NMT تميل إلى الأداء بشكل سيئ لأن التدريب النموذجي يتقارن بسرعة إلى نقطة حيث يتجاهل توزيع SoftMax باستخدام تسجيل الدخول إلى توزيع تسمية الذهب. على الرغم من أن تجانس الملصقات هو حل مشهور لمعالجة هذه المشكلة، فإننا نقترح مزيد من اقتراح تقسيم السجلات بواسطة معامل درجة الحرارة أكبر من واحد وإجبار توزيع SoftMax على أن يكون أكثر سلاسة أثناء التدريب. هذا يجعل من الصعب على النموذج بسرعة أكثر من اللازم. في تجاربنا على 11 أزواج لغوية في مجموعة بيانات Treebank الآسيوية المنخفضة الموارد، لاحظنا تحسينات كبيرة في جودة الترجمة. يركز تحليلنا على إيجاد التوازن الصحيح من تجانس الملصقات و SoftMax STIVING والتي تشير إلى أنها طرق متعامدة. وأخيرا، تكشف دراسة الانترشيات والتجميلات SoftMax عن تأثير طريقتنا على السلوك الداخلي لنماذج NMT الخاصة بنا.
Neural machine translation (NMT) models are typically trained using a softmax cross-entropy loss where the softmax distribution is compared against the gold labels. In low-resource scenarios and NMT models tend to perform poorly because the model training quickly converges to a point where the softmax distribution computed using logits approaches the gold label distribution. Although label smoothing is a well-known solution to address this issue and we further propose to divide the logits by a temperature coefficient greater than one and forcing the softmax distribution to be smoother during training. This makes it harder for the model to quickly over-fit. In our experiments on 11 language pairs in the low-resource Asian Language Treebank dataset and we observed significant improvements in translation quality. Our analysis focuses on finding the right balance of label smoothing and softmax tempering which indicates that they are orthogonal methods. Finally and a study of softmax entropies and gradients reveal the impact of our method on the internal behavior of our NMT models.
المراجع المستخدمة
https://aclanthology.org/
الترجمة التنبؤية التفاعلية هي عملية تكرارية تعاونية وحيث تنتج مترجمات البشر الترجمات بمساعدة أنظمة الترجمة الآلية (MT) بشكل تفاعلي. توجد تقنيات أخذ العينات المختلفة في التعلم النشط (AL) لتحديث نموذج MT (NMT) العصبي في السيناريو التفاعلي التنبؤ بالتنب
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد
اكتسبت نهج الترجمة الآلية العصبية شعبية في الترجمة الآلية بسبب تحليل سياقها وقدرتها ومعالجتها لقضايا الاعتماد على المدى الطويل.لقد شاركنا في المهمة المشتركة WMT21 الخاصة بترجمة اللغة المماثلة على زوج التاميل التيلجو مع اسم الفريق: NILP-NITS.في هذه ال
تعمل العديد من نماذج NLP على تسلسل الرموز الرموز الفرعية التي تنتجها قواعد التزخم المصنوعة يدويا وخوارزميات التعريفي للكلمة الفرعية.بديل عالمي بسيط هو تمثيل كل نص محوسب كسلسلة من البايتات عبر UTF-8، وضبط الحاجة إلى طبقة تضمين نظرا لأن هناك عدد أقل من
يهدف مشروع Multitrainmt Erasmus + + إلى تطوير منهج مبتكر مفتوح في الترجمة الآلية العصبية (NMT) للمتعلمين اللغوي والمترجمين كمواطنين متعدد اللغات.ينظر إلى الترجمة الآلية كمورد يمكن أن يدعم المواطنين في محاولتهم للحصول على المهارات اللغوية وتطويرها إذا