ترغب بنشر مسار تعليمي؟ اضغط هنا

الترجمة الآلية بعد التحرير (MTPE) من منظور المتدربين الترجمة: الآثار المترتبة على علم الترميز

Machine Translation Post-Editing (MTPE) from the Perspective of Translation Trainees: Implications for Translation Pedagogy

412   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة بيانات عن تصورات تدريب المتدربين في عملية MTPE وآثار التدريب على التدريب في هذا المجال.تهدف هذه الدراسة إلى تحليل أداء المتدربين في ثلاثة مهام MTPE الزوجية باللغة الإنجليزية البولندية ومقابلات ما بعد المهام لتحديد الحاجة إلى تعزيز مهارات تحرير الترجمة الآلية في تثقيف طلاب الترجمة.نظرا لأن القليل جدا من المعلومات المتعلقة بتدريب MTPE متاح، فقد يتم العثور على هذه الدراسة مفيدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

قام تطوير تقنيات الترجمة، مثل ذاكرة الترجمة والترجمة الآلية، قد غيرت تماما سير عمل صناعة الترجمة وسير العمل في العقود الماضية.ومع ذلك، تم تطوير TM و MT بشكل منفصل حتى وقت قريب.سيقوم هذا المشروع المستمر بدراسة التكامل الخارجي ل TM و MT، وفحص ما إذا كا نت الجهود الإنتاجية وما بعد التحرير للمترجمين أعلى أو أقل من استخدام TM فقط.تحقيقا لهذه الغاية، سنقوم بإجراء تجربة حيث سيطلب من طلاب الترجمة والمترجمين المحترفين ترجمة نصين قصيرين؛ثم سنتحقق من جهود ما بعد التحرير (الجهود الزمنية والتقنية والمعرفية) ونوعية النصوص المترجمة.
يتم استخدام نماذج ما بعد التحرير التلقائي (APE) مخرجات نظام الترجمة الآلية (MT) الصحيحة عن طريق التعلم من أنماط ما بعد التحرير البشري.نقدم النظام المستخدم في التقديم الخاص بنا إلى المهمة المشتركة (APE) APانية (EN-DE).نستفيد نظام MT الحديث (NG et al.، 2019) لهذه المهمة.للحصول على مزيد من التحسينات، نقوم بتكييف نموذج MT إلى مجال المهام باستخدام Wikimatrix (Schwenket al.، 2021) متبوعا بضبط جيد مع عينات إضافية للقرد من الإصدارات السابقة للمهمة المشتركة (WMT-16،17،18) وتمتلكنماذج.تغلب أنظمتنا على خط الأساس على درجات TER على مجموعة اختبار WMT'21.
الترجمة الصفرية بالرصاص، ترجمة مباشرة بين أزواج اللغة غير المرئي في التدريب، هي قدرة واعدة للترجمة الآلية العصبية متعددة اللغات (NMT). ومع ذلك، فإنه يعاني عادة من التقاط ارتباطات زائفة بين لغة الإخراج ودليل اللغة الثابتة اللغوية بسبب الهدف الأقصى لتد ريب الاحتمالات، مما يؤدي إلى أداء تحويل ضعيف في الترجمة الصفرية. في هذه الورقة، نقدم هدفا مجانيا AutoNCoder بناء على لغة محورية في هدف التدريب التقليدي لتحسين دقة الترجمة على اتجاهات الطلقة الصفرية. يظهر التحليل النظري من منظور المتغيرات الكامنة أن نهجنا يزيد فعلا بشكل ضمني زيادة توزيع الاحتمالات على اتجاهات صفرية. على اثنين من مجموعات بيانات الترجمة الآلية القياسية، نوضح أن الطريقة المقترحة قادرة على القضاء بشكل فعال على الارتباط الزائفي وتتفوق بشكل كبير من الطرق التي من بين الفنادق ذات أداء رائع. يتوفر الكود الخاص بنا في https://github.com/victorwz/zs-nmt-dae.
تتطلب الترجمة الدقيقة معلومات على مستوى المستندات، والتي يتم تجاهلها بواسطة الترجمة الآلية على مستوى الجملة.لقد أظهر العمل الحديث أن الاتساق على مستوى المستند يمكن تحسينه باستخدام معلومات ما بعد التحرير التلقائي باستخدام معلومات اللغة المستهدفة فقط ( TL).ندرس نموذج قرد موسع يدمج سياق المصدر.يكشف التقييم البشري للطلاقة والكفاة باللغة الإنجليزية - الترجمة الروسية الإنجليزية أن النموذج الذي يتمتع بالوصول إلى سياق المصدر يتفوق بشكل كبير على قرد أحادي الأحادي من حيث الكفاية، وهو تأثير تجاهله إلى حد كبير بواسطة مقاييس التقييم التلقائي إلى حد كبير.تظهر نتائجنا أن نمذجة TL فقط يزيد الطلاقة دون تحسين كفاية، مما يدل على الحاجة إلى تكييف النص المصدر لتحرير ما بعد التحرير التلقائي.كما أنها تسليط الضوء على النقاط العمياء في الأساليب التلقائية للتقييم المستهدف وإظهار الحاجة إلى تقييم بشري لتقييم جودة الترجمة على مستوى المستند بشكل موثوق.
تصف هذه الورقة نظامنا (معرف الفريق: Nictrb) للمشاركة في مهمة الترجمة الآلية المحظورة Wat'21.في نظامنا المقدم، صممنا نهج تدريب جديد للترجمة الآلية المحظورة.بواسطة أخذ العينات من هدف الترجمة، يمكننا حل المشكلة التي لا تملك بيانات التدريب العادية مفردات مقيدة.مع مزيد من المساعدة في فك التشفير المقيد في مرحلة الاستدلال، حققنا نتائج أفضل من الأساس، مما يؤكد فعالية حلنا.بالإضافة إلى ذلك، حاولنا أيضا محول الفانيليا والخريج كشبكة العمود الفقري للنموذج، بالإضافة إلى إعاقة نموذجية، مما أدى إلى تحسين أداء الترجمة النهائي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا