نقدم أول نموذج تعليمي متعدد المهام - يدعى Phonlp - للحصول على وضع العلامات الفيتنامية الفيتنامية المشتركة (POS)، والتعرف على الكيان المسمى (NER) وتحليل التبعية. تشير التجارب في مجموعات البيانات الفيتنامية إلى المؤشرات الفيتنامية أن فونلتر تنتج نتائج حديثة، مما يتفوق على نهج تعلم المهمة الواحدة التي تلتصق بها نماذج اللغة الفيتنامية المدربة مسبقا Phobert (Nguyen and Nguyen، 2020) لكل مهمة بشكل مستقل. نحن نطلق علنا phonlp كمجموعة أدوات مفتوحة المصدر تحت ترخيص Apache 2.0. على الرغم من أننا نحدد Phonlp للفيتنامية، إلا أن البرامج النصية لأمر عمل التدريب والتقييم لدينا في الواقع يمكن أن تعمل مباشرة من أجل لغات أخرى تحتوي على نموذج لغوي مدرب مسبقا مدربا مدربا ومقاذاة ذهبية مشروحة متاحة للمهام الثلاثة لوضع علامات POS و NER و TEMENTION وبعد نأمل أن تكون شركة Phonlp بمثابة مجموعة أساسية قوية ومفيدة لأبحاث وتطبيقات NLP المستقبلية ليس فقط الفيتنامية ولكن أيضا اللغات الأخرى. لدينا phonlp متاح في https://github.com/vinairesearch/phonlp
We present the first multi-task learning model -- named PhoNLP -- for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at https://github.com/VinAIResearch/PhoNLP
المراجع المستخدمة
https://aclanthology.org/
الملخص نتخذ خطوة نحو معالجة تمثيل القارة الأفريقية في أبحاث NLP من خلال جلب مختلف أصحاب المصلحة من أصحاب المصلحة في إنشاء بيانات كبيرة متاحة للجمهور وعالية الجودة للتعرف على الكيان المسمى (NER) في عشرة لغات أفريقية.إننا نقوم بالتفصيل خصائص هذه اللغات
في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام ل
يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا
ينقل التعرف على الكيان المسمى عبر المجال (NER) المعرفة NER من مجالات الموارد العالية إلى المجال المستهدف منخفض الموارد. نظرا للموارد المحدودة المسمى وانعكاف المجال، تعد Nor Cross-Domain مهمة صعبة. لمعالجة هذه التحديات، نقترح نهج تقطير المعرفة في مجال
يستخدم التعلم النشط (AL) خوارزمية اختيار البيانات لتحديد عينات تدريب مفيدة لتقليل تكلفة التوضيحية. هذه هي الآن أداة أساسية لبناء محلل تحويلات تحويلية منخفضة الموارد مثل Taggers جزء من الكلام (POS). يتم تصميم الاستدلال الموجودة بشكل عام بشكل عام على م