يمكن تصنيف الأجهزة المحمولة، التي تلخص تماما المواضيع الرفيعة المستوى التي تمت مناقشتها في وثيقة، في عبارة البصرة الحالية التي تظهر صراحة في النص المصدر والفتحية الغائبة التي لا تتطابق مع أي لاحق متجاور ولكنه مرتبط للغاية بالمصدر. معظم نهج توليد مفاتيح المفاتيح الموجودة تولد بمتزامنة خط أساتيجية موجودة وتغيب دون تمييز هذه الفئتين بشكل صريح. في هذه الورقة، يقترح اقتراح نهج محدد (SGG) في التعامل مع توليد الجماهير الموجود والمجابطة الحاضر بشكل منفصل مع آليات مختلفة. على وجه التحديد، SGG هي شبكة عصبية هرمية تتألف من محدد مقرا لها في طبقة منخفضة تتركز على جيل المفتاح الحالي، ومولد موجه في الاختيار في طبقة عالية مخصصة للتغيب عن جيل تسخير الغيام، ووحشية في المنتصف معلومات من محدد للمولد. النتائج التجريبية على أربعة معايير توليد مفاتيح المفاتيح توضح فعالية طرازنا، والتي تتفوق بشكل كبير على خطوط الأساس القوية لكلا الجداول الرائعة الحالية والمغادرة. علاوة على ذلك، فإننا نقدم SGG إلى مهمة توليد العنوان تشير إلى إمكانية قدرتها على مهام توليد اللغة الطبيعية.
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.
المراجع المستخدمة
https://aclanthology.org/
تستخدم أنظمة الرد على السؤال المرئي الحالي (VQA) بشكل شائع الشبكات العصبية الرسم البيانية (GNNS) لاستخراج العلاقات البصرية مثل العلاقات الدلالية أو العلاقات المكانية. ومع ذلك، فإن الدراسات التي تستخدم GNNS تتجاهل عادة أهمية كل علاقة وتسلسل ببساطة الن
يقدم البشر ردود مناسبة لا يستند فقط إلى كلام الحوار السابق ولكن أيضا على المعرفة الخلفية الضمنية مثل الحس السليم. على الرغم من أن نماذج توليد الاستجابة العصبية تنتج ردود تشبه الإنسان، إلا أنها في الغالب من طرفا ولا تولد أسباب وسيطة بين تاريخ الحوار و
شهدت السنوات الأخيرة ازدهارا من أعمال جيل المفاتيح العصبي (KPG)، بما في ذلك إصدار العديد من البيانات واسعة النطاق ومجموعة من النماذج الجديدة لمعالجةها.زاد أداء النموذج على مهام KPG بشكل كبير مع أبحاث التعلم العميق المتطور.ومع ذلك، يفتقر إلى مقارنة شا
أدت التطورات الأخيرة في الشبكات العصبية إلى التقدم في توليد البيانات إلى النص.ومع ذلك، فإن الافتقار إلى قدرة النماذج العصبية للسيطرة على هيكل الإخراج الذي تم إنشاؤه يمكن أن يحد في بعض تطبيقات العالم الحقيقي.في هذه الدراسة، نقترح إطارا جديدا لخطة الرو
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال