في سياق نمذجة الأحداث والتفاهم، نقترح طريقة جديدة للنمذجة التسلسل العصبية التي تأخذ تسلسلات ملحوظة جزئيا من المعرفة المنفصلة والخارجية في الاعتبار.نقوم بإنشاء AutoNcoder Neal STUITENCODER المتسلسل، والذي يستخدم إعادة تجديد Gumbel-Softmax ضمن تشفير محددة بعناية، للسماح بعملي ناجح خلال التدريب.تتمثل الفكرة الأساسية في السماح بالمعرفة المنفصلة الخارجية شبه الإشراف للتوجيه، ولكن لا تقيد، المعلمات الكامنة المتنوعة أثناء التدريب.تشير تجاربنا إلى أن نهجنا لا يتفوق فقط على خطوط أساسية متعددة وحديث الحديث في تحريض النصي السردي، ولكن أيضا التقارب بسرعة أكبر.
Within the context of event modeling and understanding, we propose a new method for neural sequence modeling that takes partially-observed sequences of discrete, external knowledge into account. We construct a sequential neural variational autoencoder, which uses Gumbel-Softmax reparametrization within a carefully defined encoder, to allow for successful backpropagation during training. The core idea is to allow semi-supervised external discrete knowledge to guide, but not restrict, the variational latent parameters during training. Our experiments indicate that our approach not only outperforms multiple baselines and the state-of-the-art in narrative script induction, but also converges more quickly.
المراجع المستخدمة
https://aclanthology.org/
قمنا في هذا البحث بمراجعة الجهود الحالية و السابقة في هذا المجال ثم قدّمنا محرك محاكاة موزع للأغراض العامة يعمل بطريقة الأحداث المتقطعة. تم تحقيق هذا المحرك باستخدام الأداة Akka و باستخدام خوارزمية
التزامن optimized loop CMB و قد تم اختبار أداء المح
في هذه الورقة، نركز على تحديد أزواج الحجة التفاعلية من وظيفتين مع مواقف معاكسة إلى موضوع معين.النظر في الآراء يتم تبادلها من وجهات نظر مختلفة موضوع المناقشة، ندرس تمثيلات منفصلة للحجج لالتقاط جوانب متفاوتة في لغات الحال (على سبيل المثال، التركيز من ا
على الرغم من التطورات الأخيرة في تطبيق نماذج اللغة المدربة مسبقا لتوليد نصوص عالية الجودة، فإن توليد مقاطع طويلة تحافظ على تماسك طويل المدى أمر صعب للغاية لهذه النماذج.في هذه الورقة، نقترح Discodvt، وهو محول متغيرات منفصلة على درايته لمعالجة مشكلة عد
الكيانات المتعلقة بالأحداث والأحداث في النص هي مكون رئيسي لفهم اللغة الطبيعية.دقة Coreference Coreference، على وجه الخصوص، أمر مهم بالنسبة للمصلحة المتزايدة بمهام تحليل المستندات متعددة الوثائق.في هذا العمل، نقترح نموذجا جديدا يمتد نموذج التنبؤ المتس
تهدف التلخيص التلقائي إلى استخراج معلومات مهمة من كميات كبيرة من البيانات النصية من أجل إنشاء إصدار أقصر من النصوص الأصلية مع الحفاظ على معلوماتها. تعتمد تدريب نماذج تلخيص الاستخراجية التقليدية بشكل كبير على الملصقات المهندسة البشرية مثل التعليقات ال