تركز معظم دراسات حماية الخصوصية للبيانات النصية على إزالة المعرفات الحساسة الصريحة. ومع ذلك، غالبا ما يتم إهمال أسلوب الكتابة الشخصية، كمؤشر قوي على التأليف،. أظهرت الدراسات الحديثة، مثل SYNTF، نتائج واعدة حول التعدين النصي للحفاظ على الخصوصية. ومع ذلك، لا يمكن خلائطها المجهول فقط إخراج ناقلات المصطلحات الرقمية التي يصعب تفسير المستلمين. نقترح نموذج توليد نص جديد مع وجود آلية أسية ذات مجموعة من مجموعة إخفاء الهوية. من خلال زيادة المعلومات الدلالية من خلال وظيفة مكافأة تدريبية تعزز، يمكن أن يؤدي النموذج إلى إنشاء نص خاص بالتفاضل الذي يحتوي على بنية نحوية دلالية ومماثلة للنص الأصلي أثناء إزالة السمات الشخصية لأسلوب الكتابة. لا يفترض أي ملصقات مشروطة أو بيانات نصية متوازية للتدريب. نحن نقيم أداء النموذج المقترح في مراجعات نظر الأقران الواقعية ومجموعات بيانات مراجعة الصرخة. تشير النتيجة إلى أن نموذجنا يتفوق على أحدث حديثة من الحفظ الدلالي، ومضاءة التأليف، وتحول ستايلومتريك.
Most of privacy protection studies for textual data focus on removing explicit sensitive identifiers. However, personal writing style, as a strong indicator of the authorship, is often neglected. Recent studies, such as SynTF, have shown promising results on privacy-preserving text mining. However, their anonymization algorithm can only output numeric term vectors which are difficult for the recipients to interpret. We propose a novel text generation model with a two-set exponential mechanism for authorship anonymization. By augmenting the semantic information through a REINFORCE training reward function, the model can generate differentially private text that has a close semantic and similar grammatical structure to the original text while removing personal traits of the writing style. It does not assume any conditioned labels or paralleled text data for training. We evaluate the performance of the proposed model on the real-life peer reviews dataset and the Yelp review dataset. The result suggests that our model outperforms the state-of-the-art on semantic preservation, authorship obfuscation, and stylometric transformation.
المراجع المستخدمة
https://aclanthology.org/
لبناء التطبيقات المستندة إلى التعلم في الآلات من أجل المجالات الحساسة مثل الطبية والقانونية، وما إلى ذلك حيث يحتوي النص الرقمي على معلومات خاصة، فإن عدم الكشف عن هويت النص مطلوب للحفاظ على الخصوصية. تسلسل العلامات، على سبيل المثال كما فعلت في التعرف
أظهرت النماذج العصبية الكبيرة المدربة مسبقا تقدما ملحوظا في جيل النص. في هذه الورقة، نقترح إنشاء نص مكيف على البيانات المهيكلة (الجدول) وبادئة (النص المكتوب) من خلال الاستفادة من النماذج المدربة مسبقا. نقدم بيانات جديدة إلى نص البيانات، جدول مع نص مك
نقترح النماذج العصبية لتوليد نص من تمثيلات معناية رسمية بناء على هياكل تمثيل الخطاب (DRSS).DRSS هي تمثيلات على مستوى المستند والتي تشفص بالتفاصيل الدلالية الغنية المتعلقة بالعلاقات الخطابية، والافتراض، والتعايش التعاوني داخل وعبر الجمل.نقوم بإضفاء ال
الوصف التحليلي للمخططات هو منطقة بحثية ومهمة ذات العديد من التطبيقات في الأوساط الأكاديمية والصناعة.ومع ذلك، فقد تلقت هذه المهمة الصعبة اهتماما محدودا من مجتمع أبحاث اللغويات الحاسوبية.تقترح هذه الورقة Autochart، مجموعة بيانات كبيرة للوصف التحليلي لل
غالبا ما تظهر اللغة الطبيعية هيكل هرمي متأصل متأرجلا مع بناء جملة معقدة ودليل. ومع ذلك، تعلم معظم النماذج الإدارية العميقة في أحدث تضمينها فقط في مساحة ناقلات Euclidean، دون محاسبة هذه الملكية الهيكلية للغة. في هذه الورقة، نحقق في جيل النص في مساحة ك