ترغب بنشر مسار تعليمي؟ اضغط هنا

Sesstim: التقييم الدلالي crosslingual للترجمة الآلية

SentSim: Crosslingual Semantic Evaluation of Machine Translation

186   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم تقييم الترجمة الآلية (MT) حاليا بأحد طريقتين: بطريقة أحادية الأجل، بالمقارنة مع إخراج النظام إلى ترجمات مرجعية بشرية واحدة أو أكثر، أو في أزياء تقاطعات مدربة، من خلال بناء نموذج إشرافي للتنبؤ بعشرات الجودة من البيانات ذات العلامات على الإنسان. في هذه الورقة، نقترح بديل أكثر فعالية من حيث التكلفة، ومع ذلك أدائين جيدا من حيث التكلفة، والاعتماد على كلمة متعددة المحاكمات متعددة اللغات وتمثيلات الجملة، ونحن نقارن مباشرة المصدر مع الجملة ترجمت الآلة، وبالتالي تجنب الحاجة إلى كل من الترجمات المرجعية والمسمى بيانات التدريب. يعتمد المقياس على النهج القائم على أحدث الولاية - وهي مسافة BertScore و Word Mover - من خلال دمج فكرة التشابه الدلالي الحكم. من خلال القيام بذلك، فإنه يحقق ارتباطا أفضل مع درجات بشرية على مجموعات بيانات مختلفة. نظظ أنه يتفوق على هذه المقاييس وغيرها من المقاييس الأخرى في إعداد أحادي الأحادي القياسي (الترجمة المرجعية MT)، كما هو الحال في إعداد ثنائي اللغة المصدر - MT، حيث تنفذ على قدم المساواة مع نهج المربع الزجاجي لتقدير الجودة التي تعتمد على نموذج MT معلومة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يمكن تحسين جودة الترجمة من خلال المعلومات العالمية من الجملة المستهدفة المطلوبة لأن وحدة فك الترميز يمكن أن تفهم كل من المعلومات السابقة والمستقبلية.ومع ذلك، يحتاج النموذج إلى تكلفة إضافية لإنتاج والنظر في هذه المعلومات العالمية.في هذا العمل، لحقن مع لومات عالمية ولكن أيضا توفير التكلفة، نقدم طريقة فعالة للعينة والنظر في مشروع دلالي كمعلومات عالمية من الفضاء الدلالي ل فكيبها مع خالية من التكلفة تقريبا.على عكس التكيفات الناجحة الأخرى، لا يتعين علينا تنفيذ عملية تشبه ممن عينات مرارا وتكرارا من الفضاء الدلالي المحتمل.تظهر التجارب التجريبية أن الطريقة المقدمة يمكن أن تحقق أداء تنافسي في أزواج اللغة المشتركة مع ميزة واضحة في كفاءة الاستدلال.سنفتح جميع التعليمات البرمجية المصدر الخاصة بنا على Github.
اكتسبت الترجمة الآلية المتزامنة الجر مؤخرا، بفضل تحسينات الجودة المهمة ومختام تطبيقات البث.تحتاج أنظمة الترجمة المتزامنة إلى إيجاد مفاضلة بين جودة الترجمة ووقت الاستجابة، وبالتالي تم اقتراح تدابير الكمون المتعددة.ومع ذلك، يتم تقدير تقييمات الكمون للت رجمة الفورية على مستوى الجملة، ولا تأخذ في الاعتبار الطبيعة المتسلسلة لسيناريو البث.في الواقع، هذه تدابير الكمون على مستوى الجملة ليست مناسبة تماما للترجمة المستمرة، مما أدى إلى وجود أرقام غير متماسكة مع سياسة الترجمة المتزامنة للنظام التي يتم تقييمها.يقترح هذا العمل تكيف مستوى دفق من تدابير الكمون الحالية بناء على نهج إعادة تجزئة مطبق على ترجمة الناتج، والتي يتم تقييمها بنجاح على شروط البث لمهمة الإشارة IWSLT.
التقييم الخالي من المرجع لديه القدرة على جعل تقييم الترجمة الآلية أكثر قابلية للتطوير بشكل كبير، مما يتيح لنا المحور بسهولة لغات أو مجالات جديدة.لقد أظهر مؤخرا أن الاحتمالات التي قدمتها نموذج كبير متعدد اللغات يمكن أن تحقق حالة من النتائج الفنية عند استخدامها كتقسيط مجاني مرجعي.نقوم بتجربة تعديلات مختلفة لهذا النموذج، وإظهار ذلك من خلال تحجيمه، يمكننا مطابقة أداء بلو.نقوم بتحليل نقاط الضعف المحتملة المختلفة للنهج، وتجد أنه قوي بشكل مدهش ومن المرجح أن تقدم أداء معقول عبر مجموعة واسعة من المجالات وصفات النظام المختلفة.
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل مباشر أوزان الاهتمام دون أي تفاعل رمزي إلى رمز ويحسن قدرتها على تفاعل الطبقة إلى الطبقة. عبر مجموعة واسعة من التجارب في 10 مهام ترجمة آلية، نجد أن نماذج RAN تنافسية وتفوق نظيرها المحول في بعض السيناريوهات، مع عدد أقل من المعلمات ووقت الاستدلال. خاصة، عند تطبيق ركض إلى فك ترميز المحولات، يجلب التحسينات المتسقة عن طريق حوالي +0.5 بلو في 6 مهام الترجمة و +1.0 Bleu على مهمة الترجمة التركية الإنجليزية. بالإضافة إلى ذلك، نجرينا تحليلا مكثفا بشأن أوزان الاهتمام في ركض لتأكيد المعقولية. ران لدينا هو بديل واعد لبناء نماذج NMT أكثر فعالية وكفاءة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا