ترغب بنشر مسار تعليمي؟ اضغط هنا

نقل اللغة السلبية في المتعلم اللغة الإنجليزية: مجموعة بيانات جديدة

Negative language transfer in learner English: A new dataset

367   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن أن تساعد ردود الفعل التصحيحية التلقائية التلقائي على تعلم اللغة من خلفيات مختلفة اكتساب لغة جديدة بشكل أفضل.تقدم هذه الورقة مجموعة بيانات متعلمة باللغة الإنجليزية التي يرافقها أخطاء المتعلمين معلومات حول مصادر الأخطاء المحتملة.تحتوي مجموعة البيانات هذه على خطأ مشروح يدويا أسباب أخطاء كتابة المتعلم.هذه تسبب ربط أخطاء المتعلم بالهياكل من لغاتهم الأولى، عندما تتباعد القواعد باللغة الإنجليزية وفي اللغة الأولى.ستمكن هذه البيانات البيانات الجديدة من استحواذ الباحثين الاستحواذين باللغة الثانية على تحليل كمية كبيرة من أخطاء المتعلمين المرتبطة بنقل اللغة من اللغة الأولى من المتعلمين.يمكن أيضا تطبيق DataSet أيضا في تخصيص أنظمة تصحيح الأخطاء النحوية وفقا للغة الأولى للمتعلمين وفي تقديم ملاحظات مستنيرة عن طريق الخطأ.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مراجعة العقود هي إجراء يستغرق وقتا طويلا يتحمل نفقات كبيرة للشركات وعدم المساواة الاجتماعية لأولئك الذين لا يستطيعون تحمل تكاليفها. في هذا العمل، نقترح استنتاج اللغة الطبيعي على مستوى المستند (NLI) للعقود "، وهو جديد، تطبيق عالمي حقيقي من NLI يتناول مثل هذه المشاكل. في هذه المهمة، يتم إعطاء نظام مجموعة من الفرضيات (مثل بعض الالتزامات بالاتفاق قد ينجو من الإنهاء. ") وعقد، ويطلب منها تصنيف ما إذا كانت كل فرضية تنطوي عليها" "، تناقض مع" لم يذكره "(محايد) العقد وكذلك تحديد الأدلة" للقرار على أنه يمتد في العقد. شرحنا وإطلاق سراح أكبر جوربوس حتى الآن يتكون من 607 عقدا مشروحا. نوضح بعد ذلك أن النماذج الحالية تفشل بشكل سيء في مهمتنا وإدخال خط أساس قوي، والتي (أ) تحديد دليل الأدلة كتصنيف متعدد العلامات على المدافع بدلا من محاولة التنبؤ بطارية الرموز البديلة والنهاية، و (ب) توظف تجزئة السياق أكثر تطورا للتعامل مع وثائق طويلة. نوضح أيضا أن الخصائص اللغوية للعقود، مثل النفي من خلال الاستثناءات، تساهم في صعوبة هذه المهمة وأن هناك مجالا كبيرا للتحسين.
تقدم الورقة موردا جديدا ورمائيا، لدراسة مورفولوجيا تكوين الكلمة السويدية الحديثة.تم تقسيم ما يقرب من 16.000 مادة معجمية في المورد بشكل يدويا إلى مورفيمز تشكيل Word، ومسمى لفئاتها، مثل البادئات والمعقاص والجذور، وما إلى ذلك آليات تكوين كلمة، مثل الاشت قاق والمضاعف قد ارتبطت بكل عنصرفي القائمة.توضح المقالة اختيار العناصر التوضيحي اليدوي ومبادئ التوضيحية، والتقارير المتعلقة بموثوقية التوضيحية اليدوية، ويعرض الأدوات والموارد وبعض الإحصاءات الأولى.بالنظر إلى طبيعة الموارد الخاصة بالموارد، من الممكن استخدامه للدراسات التجريبية وكذلك تطوير خوارزميات مدركة في مجال اللغويسيا تجزئة مورفيم ووضع العلامات (نهج الكلمات الفرعية الإحصائية CF).سيتم توفير المورد بحرية متاحة.
ما مدى صعوبة ذلك بالنسبة لمتعلمي اللغة الإنجليزية (ESL) للغة الإنجليزية (ESL) قراءة النصوص الإنجليزية الصاخبة؟هل يحتاج المتعلمون ESL إلى التطبيع المعجمي لقراءة النصوص الإنجليزية الصاخبة؟قد تؤثر هذه الأسئلة أيضا على تكوين المجتمع على مواقع الشبكات الا جتماعية حيث يمكن أن تعزى الاختلافات إلى متعلمي ESL ومكبرات الصوت الإنجليزية الأصلية.ومع ذلك، فقد عالجت بعض الدراسات هذه الأسئلة.تحقيقا لهذه الغاية، بنينا مقيمين دقيقين للغاية لقراءة القراءة لتقييم قابلية قراءة النصوص للمتعلمين ESL.ثم طبقنا هذا المقيمين للنصوص الإنجليزية الصاخبة لمزيد من تقييم قابلية قراءة النصوص.أظهرت النتائج التجريبية أنه على الرغم من أن متعلمي ESL على المستوى المتوسطين يمكنهم قراءة معظم النصوص الإنجليزية الصاخبة في المقام الأول، فإن التطبيع المعجمي يحسن بشكل كبير من قراءة النصوص الإنجليزية الصاخبة للمتعلمين ESL.
يعيد نظام استرجاع النص للتعلم اللغوي مواد القراءة في مستوى الصعوبة المناسب للمستخدم.يحافظ النظام عادة على نموذج متعلم على معرفة المفردات للمستخدم، وتحدد النصوص التي تناسب النموذج.مع زيادة الكفاءة في اللغة للمستخدم، تكون التحديثات النموذجية ضرورية لاس ترداد النصوص مع التعقيد المعجمي المقابل.نحن نتحقق في نموذج متعلم مفتوح يتيح تعديل المستخدم لمحتواه، وتقييم فعاليته فيما يتعلق بمبلغ جهد تحديث المستخدم.قارنا هذا النموذج مع النهج المتدرج، حيث يقوم النظام بإرجاع النصوص في الصف الأمثل.عندما يقوم المستخدم بإجراء ما لا يقل عن نصف التحديثات المتوقعة لنموذج المتعلم المفتوح، تظهر نتائج المحاكاة أنه يتفوق على النهج المتدرج في استرجاع النصوص التي تناسب تفضيلات المستخدم كثافة كلمة جديدة.
نقدم مجموعة بيانات موازية فيتنامية عالية الجودة ومقدمة على نطاق واسع من أزواج الجملة بنسبة 3.02m، والتي تبلغ 2.9 مليون أزواج أكبر من كوربوس الترجمة الآلية الفيتنامية-الإنجليزية الفيتنامية - IWSLT15.نقوم بإجراء تجارب تقارن خطوط الأساس العصبية القوية و محركات الترجمة الآلية المعروفة على مجموعة بياناتنا وتجد أنه في كل من التقييمات التلقائية والإنسانية: يتم الحصول على أفضل أداء من خلال ضبط التسلسل الدقيق للتسلسل المدرب مسبقاوبعدلدينا أفضل معارفنا، هذه هي أول دراسة الترجمة الفيتنامية على نطاق واسع النطاق.نأمل أن تكون مجموعة بياناتنا المتاحة للجمهور ودراستها نقطة انطلاق للبحث والتطبيقات في المستقبل على الترجمة الفيتنامية والترجمة الآلية الإنجليزية.نطلق سراح DataSet لدينا في: https://github.com/vinairesearch/phomt

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا