يمكن أن تصدر نماذج الموضوع العصبي أو استبدال مدخلات كيس الكلمات مع التمثيلات المستفادة من نماذج التنبؤ بكلمة التنبؤ المدربة مسبقا مسبقا. تتمثل إحدى فائدة واحدة عند استخدام التمثيلات من النماذج متعددة اللغات هي أنها تسهل نمذجة موضوع الصلاع اللاحق للصفر. ومع ذلك، في حين أنه لوحظ على نطاق واسع أن المدينات المدربة مسبقا يجب أن يتم ضبطها بشكل جيد لمهمة معينة، فليس من الواضح على الفور ما يجب أن يبدو الإشراف بهذه المهمة غير المزدوجة مثل نمذجة الموضوع. وبالتالي، نقترح عدة طرق لترميز التركيز الدقيق لتحسين كل من النمذجة النمذجة العصبية أحادية الألوان والصفرية. نحن نفكر في ضبط المهام الإضافية، بناء مهمة تصنيف موضوع جديد، دمج هدف تصنيف الموضوع بشكل مباشر في التدريب النموذجي للموضوع، واستمر التدريب قبل التدريب. نجد أن تمثيل تشفير الترميز بشكل جيد على تصنيف الموضوع وإدماج مهمة تصنيف الموضوع مباشرة في نمذجة موضوع يحسن جودة الموضوع، وأن تمثيل التشفير الدقيق في أي مهمة في أي مهمة هي أهم عامل لتسهيل النقل عبر اللغات.
Neural topic models can augment or replace bag-of-words inputs with the learned representations of deep pre-trained transformer-based word prediction models. One added benefit when using representations from multilingual models is that they facilitate zero-shot polylingual topic modeling. However, while it has been widely observed that pre-trained embeddings should be fine-tuned to a given task, it is not immediately clear what supervision should look like for an unsupervised task such as topic modeling. Thus, we propose several methods for fine-tuning encoders to improve both monolingual and zero-shot polylingual neural topic modeling. We consider fine-tuning on auxiliary tasks, constructing a new topic classification task, integrating the topic classification objective directly into topic model training, and continued pre-training. We find that fine-tuning encoder representations on topic classification and integrating the topic classification task directly into topic modeling improves topic quality, and that fine-tuning encoder representations on any task is the most important factor for facilitating cross-lingual transfer.
المراجع المستخدمة
https://aclanthology.org/
نماذج الموضوعات هي أدوات مفيدة لتحليل وتفسير المواضيع الأساسية الرئيسية للنص الكبير.تعتمد معظم نماذج الموضوعات على حدوث كلمة Word لحساب موضوع، أي مجموعة مرجحة من الكلمات التي تمثل معا مفهوم دلالي رفيع المستوى.في هذه الورقة، نقترح نموذجا جديدا جديدا م
أصبح نص قصير في الوقت الحاضر أشكالا أكثر عصرية من البيانات النصية، على سبيل المثال، منشورات Twitter، عناوين الأخبار ومراجعات المنتجات. يلعب استخراج الموضوعات الدلالية من النصوص القصيرة دورا مهما في مجموعة واسعة من تطبيقات NLP، ومصمم الموضوع العصبي ال
مجردة التعرف على الكيانات المسماة (NER) هي مهمة NLP الأساسية، والتي صاغها عادة كتصنيف على سلسلة من الرموز. تشكل اللغات الغنية المورفولوجية (MRLS) تحديا لهذه الصياغة الأساسية، حيث لا تتزامن حدود الكيانات المسماة بالضرورة مع حدود الرمز المميز، بل يحترم
هناك نقص في شورا عالي الجودة للغات الجنوبية السلافية. مثل هذه الشركات مفيدة لعلماء الكمبيوتر والباحثين في العلوم الاجتماعية والعلوم الإنسانية على حد سواء، مع التركيز على العديد من تطبيقات اللغات والمحتوى وتطبيقات معالجة اللغة الطبيعية. تقدم هذه الورق
تعرض هذه الورقة تعدد الأبعاد التعدين على المحتوى الذي تم إنشاؤه من قبل المستخدم الذي تم جمعه من Newshires وخدمات الشبكات الاجتماعية بثلاث لغات مختلفة: اللغة الإنجليزية --- لغة عالية الموارد، المالطية --- لغة منخفضة الموارد، والالططية-الإنجليزية -- لغ