إن أنظمة الحوار المحددة مع نماذج لغة كبيرة تولد ردود متماسكة محليا، ولكن تفتقر إلى السيطرة الجميلة على الردود اللازمة لتحقيق أهداف محددة.تتميز طريقة واعدة للسيطرة على جيل الاستجابة جيل يستند إلى Exemplar، حيث تحرير النماذج تحرير الردود المثالية التي يتم استرجاعها من بيانات التدريب، أو مكتوبة يدويا إلى أهداف مستوى الخطاب استراتيجيا، لتناسب سياقات حوار جديدة.نقدم نموذج توليد حوار يستند إلى Exemplar، EDGE، يستخدم الإطارات الدلالية الموجودة في ردود Exemplar لتوجيه جيل الاستجابة.نظير على أن السيطرة على توليد الحوار على أساس الإطارات الدلالية من النماذج يحسن تماسك الردود التي تم إنشاؤها، مع الحفاظ على المعنى الدلالي وأهداف المحادثة الموجودة في ردود مثالية.
Dialogue systems pretrained with large language models generate locally coherent responses, but lack fine-grained control over responses necessary to achieve specific goals. A promising method to control response generation is exemplar-based generation, in which models edit exemplar responses that are retrieved from training data, or hand-written to strategically address discourse-level goals, to fit new dialogue contexts. We present an Exemplar-based Dialogue Generation model, EDGE, that uses the semantic frames present in exemplar responses to guide response generation. We show that controlling dialogue generation based on the semantic frames of exemplars improves the coherence of generated responses, while preserving semantic meaning and conversation goals present in exemplar responses.
المراجع المستخدمة
https://aclanthology.org/
في أنظمة الحوار الموجهة نحو المهام، تميل أساليب تتبع حكومية الحوار الحديثة إلى أداء جيل تمرير واحد من حالة الحوار بناء على حالة الحوار السابقة. أخطاء هذه النماذج التي تم إجراؤها بدورها الحالي عرضة للنقل إلى المنعطف التالي، مما تسبب في نشر الأخطاء. في
نقدم إطار جيل الحوار الاصطناعي، Velocidapter، الذي يعالج مشكلة توافر Corpus لفهم الحوار. DEVERSITS VELOCIDAPTER DEDASTS من خلال محاكاة المحادثات الاصطناعية مجال حوار موجه نحو المهام، تتطلب كمية صغيرة من أعمال Bootstrapping لكل مجال جديد. نحن نقيم فعا
بالنسبة لجهاز كمبيوتر يتفاعل بشكل طبيعي مع إنسان، يجب أن يكون يشبه الإنسان.في هذه الورقة، نقترح نموذج توليد الاستجابة العصبي مع التعلم متعدد المهام للجيل والتصنيف، مع التركيز على العاطفة.يتم تدريب نموذجنا على أساس بارت (لويس وآخرون.، 2020)، وهو نموذج
يستخدم البشر منطق المنطقي (CSR) ضمنيا لإنتاج ردود طبيعية ومتماسكة في المحادثات. تهدف إلى إغلاق الفجوة بين نماذج جيل الاستجابة الحالية (RG) قدرات الاتصالات البشرية، نريد أن نفهم لماذا تستجيب نماذج RG أثناء قيامهم بتحقيق فهم نموذج RG للمنطق المنطقي الذ
تعتبر تصور القصة مهمة غير مسجلة تقع عند تقاطع العديد من الاتجاهات البحثية المهمة في كل من رؤية الكمبيوتر ومعالجة اللغات الطبيعية. في هذه المهمة، نظرا لسلسلة من التسميات التوضيحية باللغة الطبيعية التي تنشأ قصة، يجب أن يولد الوكيل سلسلة من الصور التي ت