ترغب بنشر مسار تعليمي؟ اضغط هنا

ما قبل التدريب الموحد لفهم البرنامج وتوليده

Unified Pre-training for Program Understanding and Generation

301   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تلخيص التعليمات البرمجية والجيل التمدد التحويل بين لغة البرمجة (PL) واللغة الطبيعية (NL)، بينما تتفافر ترجمة التعليمات البرمجية ترحيل الرمز القديم من واحد إلى آخر. تقدم هذه الورقة Plbart، نموذج تسلسل إلى تسلسل قادر على أداء مجموعة واسعة من فهم البرامج واللغة ومهام الجيل. يتم تدريب PLBART مسبقا على مجموعة واسعة من وظائف Java و Python والنص NL المرتبط NL عبر Denoising AutoNCoding. تجارب في تلخيص التعليمات البرمجية في اللغة الإنجليزية وتوليد التعليمات البرمجية، وترجمة التعليمات البرمجية في سبع لغات البرمجة تظهر أن PLBART تفوق النماذج أو من المنافسين من النماذج الحديثة. علاوة على ذلك، فإن التجارب المعنية بالمهام التمييزية، على سبيل المثال، إصلاح البرامج، وكشف استنساخ، وكشف الشفرة الضعيفة، إظهار فعالية PLBART في فهم البرنامج. علاوة على ذلك، يكشف التحليل أن Plbart يتعلم بناء جملة البرنامج، والأسلوب (على سبيل المثال، اتفاقية تسمية المعرف)، التدفق المنطقي (على سبيل المثال، إذا كانت كتلة داخل كتلة أخرى تعادل أخرى إذا كانت الكتلة) ذات أهمية حاسمة في البرامج، وبالتالي تتفوق حتى مع التعليقات التوضيحية المحدودة وبعد



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مكنت التقدم في تمثيل اللغة الإنجليزية مهمة أكثر كفاءة عينة من خلال التعلم بكفاءة ترميز يصنف بدائل الرمز المميز بدقة (Electra).أي، بدلا من تدريب نموذج لاستعادة الرموز الممثيلين، يقوم بتدريب نموذج تمييزي على التمييز بين الرموز الإدخال الحقيقية من الرمو ز التالفة التي تم استبدالها بشبكة مولدات.من ناحية أخرى، فإن نهج تمثيل اللغة باللغة العربية الحالية تعتمد فقط على الاحتجاج عن طريق نمذجة اللغة الملثم.في هذه الورقة، نقوم بتطوير نموذج تمثيل اللغة باللغة العربية، والتي نستها ARAELECTRA.يتم الاحترام من النموذج الخاص بنا باستخدام هدف الكشف عن الرمز المميز في النص العربي الكبير.نقوم بتقييم نموذجنا على مهام NLP العربية المتعددة، بما في ذلك فهم القراءة وتحليل المعرفات والاعتراف باسم الكيان المسمى ونعرض أن ARAELECTRA تتفوق على نماذج تمثيل اللغة العربية الحديثة الحالية، بالنظر إلى نفس البيانات المحددةحجم نموذج أصغر.
نقدم VideoClip، وهو نهج مقاوم للتناقض في تدريب نموذج موحد مسبقا لفهم الفيديو والنصية الصفرية، دون استخدام أي ملصقات على مهام المصب.يقوم VideoClep بتدريب محول الفيديو والنص عن طريق تناقض أزواج فيديو إيجابية مؤقتة متداخلة مع السلبيات الصعبة من أقرب است رجاع جار.تجاربنا على سلسلة متنوعة من المهام المصب، بما في ذلك استرجاع الفيديو على مستوى التسلسل، والتعريب الخاص بمستوى عمل Videoqa ومستوى الرمز المميز، وتجزئة العمل تكشف عن أداء حالة من بين الفن، وتجاوز العمل السابق، وفي بعض الحالات يفوقنالنهج الخاضعة للإشراف.يتوفر الكود في https://github.com/pytorch/fairseq/examples/mmpt.
تسهل المعلومات اللغوية الخشنة، مثل الكيانات أو العبارات المسماة، التعلم التمثيل بشكل كاف في التدريب المسبق. تعمل السابقة بشكل أساسي على توسيع هدف نمذجة لغة بيرت الملثمين (MLM) من إخفاء الرموز الفردية إلى تسلسلات متجاورة من الرموز N. نقول أن هذه الطري قة اخفاء هذه المتخلل تهمل طرازات التبعيات داخل الإتصال والمعلومات المشتركة بين المعلومات اللغوية المحبوبة الخشنة. كديل، نقترح Ernie-Gram، وهي طريقة إخفاء N-Gram بشكل صريح لتعزيز دمج المعلومات المحبوسة الخشنة في ما قبل التدريب. في Ernie-Gram، N-Grams ملثمين وتوقعت مباشرة باستخدام هويات N-Gram واضحة بدلا من تسلسلات متجاورة من الرموز N. علاوة على ذلك، توظف Ernie-Gram نموذج مولد للعينة من هويات N-Gram المعقولة كقنعة اختيارية N-Gram وتوقعها في كل من الأخلاق الخشنة والحبوب الدقيقة لتمكين تنبؤات N-Gram الشاملة ونمذجة العلاقة. نحن نسترجع تدريبات Ernie-Gram على النصوص باللغة الإنجليزية والصينية ونغمة الجميلة في 19 مهام المصب. تظهر النتائج التجريبية أن Ernie-Gram يتفوق على نماذج مسبقة التدريب السابقة مثل XLNet و Roberta بهامش كبير، وتحقق نتائج قابلة للمقارنة مع الطرق الحديثة. تم إصدار رموز المصدر والنماذج المدربة مسبقا في https://github.com/paddlepaddle/ernie.
أصبحت نماذج لغة المحولات المدربة مسبقا (LM) لتشفيات تمثيل النص.البحث المسبق يلتزم LMS عميق لتشفير تسلسل النص مثل الجمل والمرورات في تمثيلات ناقلات كثيفة واحدة لمقارنة النص وانتبعدة فعالة.ومع ذلك، تتطلب التشفير الكثيفة الكثير من البيانات والتقنيات الم تطورة للتدريب بشكل فعال وتعاني في مواقف البيانات المنخفضة.تجد هذه الورقة سبب رئيسي هو أن هيكل العناية الداخلية القياسية ل LMS غير جاهزة للاستخدام للترميزات الكثيفة، والتي تحتاج إلى إجمالي معلومات نصية في التمثيل الكثيف.نقترح ما قبل القطار نحو التشفير الكثيف مع بنية محول رواية، مكثف، حيث ظروف التنبؤ LM على تمثيل كثيف.تعرض تجاربنا تظهر المكثف يحسن أكثر من LM القياسية من قبل هوامش كبيرة على مهام استرجاع النص المختلفة والتشابه.
تظهر الأبحاث الحديثة أن النماذج المدربة مسبقا (PTMS) مفيدة تجزئة الكلمات الصينية (CWS).ومع ذلك، فإن PTMS المستخدمة في الأعمال السابقة عادة ما تعتمد نمذجة اللغة كامرأة تدريبية مسبقا، تفتقر إلى معرفة تجزئة مسبقة خاصة بمهام المهام وتجاهل التناقض بين مها م ما قبل التدريب ومهام CWS المصب.في هذه الورقة، نقترح MetASE مطلقا مدربا مسبقا مسبقا CWS، والذي توظف هندسة موحدة ويشمل خوارزمية التعلم المعتوية في مهمة ما قبل التدريب متعدد المعايير.تظهر النتائج التجريبية أن METASEG يمكن أن تستخدم معرفة تجزئة مسبقة مشتركة من المعايير الحالية المختلفة وتخفيف التناقض بين النماذج المدربة مسبقا ومهام CWS المصب.علاوة على ذلك، يمكن أن يحقق MetASEG أداء جديدا على أحدث بيانات CWS المستخدمة على نطاق واسع وتحسين أداء النموذج بشكل كبير في إعدادات الموارد المنخفضة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا