ترغب بنشر مسار تعليمي؟ اضغط هنا

الوسطاء في تحديد ما يجري برت ينفذ أولا

Mediators in Determining what Processing BERT Performs First

313   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما يستخدم النماذج العصبية لتحقيق القدرة على أداء مهام المصب باستخدام أنماط التنشيط الخاصة بهم غالبا ما تستخدم أجزاء الشبكة المتخصصة في أداء المهام.ومع ذلك، فإن القليل من العمل موجه عوامل الوساطة المحتملة في هذه المقارنات.كعامل توسط في حالة الاختبار، ننظر إلى طول سياق التنبؤ، أي طول الفترة التي تكون معالجتها مطلوبة في الحد الأدنى لأداء التنبؤ.نظرا لأن عدم السيطرة على طول السياق قد يؤدي إلى استنتاجات متناقضة فيما يتعلق بأنماط التوطين للشبكة، اعتمادا على توزيع بيانات التحقيق.في الواقع، عند التحقيق في بيرت مع سبع مهام، نجد أنه من الممكن الحصول على 196 تصنيفا مختلفا بينهما عند التعامل مع توزيع أطوال السياق في مجموعة بيانات التحقيق.نستنتج عن طريق تقديم أفضل الممارسات لإجراء هذه المقارنات في المستقبل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

محادثات طبيعية مليئة التدقيق.تحقق هذه الدراسة إذا وتفهم برت وكيفية التنقيس بثلاث تجارب: (1) دراسة سلوكية باستخدام مهمة نهرية، (2) تحليل ل Aregbeddings و (3) تحليل لآلية الاهتمام على التنقيس.توضح الدراسة السلوكية أنه بدون ضبط جيد على البيانات النظافة، لا يعاني بيرت خسارة كبيرة من الأداء عند تقديمها مقارنة بالمدخلات بطلاقة (EXP1).يكشف التحليل على أزواج الجملة الجماعية والجوزاء بطلاقة أن الطبقة الأعمق، كلما زاد مماثلة تمثيلها (EXP2).يشير هذا إلى أن الطبقات العميقة من بيرت تصبح ثابتا نسبيا للتنقيس.نحن نحدد الاهتمام كآلية محتملة يمكن أن تفسر هذه الظاهرة (EXP3).بشكل عام، تشير الدراسة إلى أن بيرت لديه معرفة بنية التنظير.نؤكد على إمكانية استخدام بيرت لفهم الكلام الطبيعي دون إزالة التنظير.
إن الفهم القراءة الآلي (MRC) هو مهمة NLP الصعبة التي يتطلبها التعامل بعناية مع جميع الحبيبات اللغوية من Word، الجملة إلى المرور.بالنسبة إلى MRC الاستخراجية، تم عرض فترة الإجابة في الغالب عن طريق الأدلة الرئيسية الوحدات اللغوية، حيث إنها جملة في معظم الحالات.ومع ذلك، اكتشفنا مؤخرا أن الجمل قد لا تكون محددة بوضوح في العديد من اللغات إلى النطاقات المختلفة، بحيث يؤدي ذلك إلى ما يسمى بمشكلة غموض وحدة الموقع ونتيجة لذلك، مما يجعل من الصعب على النموذج لتحديد الجملة التي تحتوي على تمديد الإجابة بالضبط عندماالجملة نفسها لم يتم تعريفها بوضوح على الإطلاق.مع أخذ اللغة الصينية كدراسة حالة، فإننا نوضح وتحليل هذه الظاهرة اللغوية واقترح قارئ مقابلة مع التنافق الصريح بالإجمال لتخفيف مثل هذه المشكلة.يساعد قارئنا المقترح في النهاية في تحقيق أحدث حالة جديدة في مؤشر MRC الصيني ويظهر إمكانات كبيرة في التعامل مع لغات أخرى.
أظهرت السنوات الأخيرة تطورات سريعة في مجال تعلم الجهاز متعدد الوسائط، والجمع بين الأمراء على سبيل المثال، الرؤية والنصوص أو الكلام.في هذه الورقة الموضع، نوضح كيف يستخدم الحقل التعريفات القديمة متعددة الوسائط التي تثبت عصر التعلم الآلي.نقترح تعريف مهم ة جديدة للعمليات النسبية (متعددة) في سياق تعلم الآلة متعددة الوسائط التي تركز على التمثيلات والمعلومات ذات الصلة بمهمة تعليمية آلات معينة.من خلال تعريفنا الجديد لعدة التعددية، نهدف إلى تقديم مؤسسة مفقودة لأبحاث متعددة الوسائط، وهو عنصر مهم من التأريض اللغوي ومعالم حاسمة تجاه NLU.
أصبحت النماذج القائمة على المحولات القياسية الفعلية في مجال معالجة اللغة الطبيعية (NLP).من خلال الاستفادة من نصائح النص غير المستمر الكبيرة، فإنها تمكن من التعلم الفعال للتحويل المؤدي إلى نتائج أحدث النتائج في العديد من مهام NLP.ومع ذلك، بالنسبة إلى لغات الموارد المنخفضة والمهام المتخصصة للغاية، تميل نماذج المحولات إلى التخلف عن الأساليب الكلاسيكية أكثر (على سبيل المثال SVM، LSTM) بسبب الافتقار إلى كورسا المذكور أعلاه.في هذه الورقة نركز على المجال القانوني ونحن نقدم نموذج برت روماني مدربا مسبقا على كوربوس متخصص كبير.تتفوق نموذجنا على العديد من خطوط خطوط خطوط خطوط خطوط خطية قوية للتنبؤ بالحكم القانوني على شركتين مختلفين تتكون من حالات من المحاكمات التي تنطوي على البنوك في رومانيا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا