ترغب بنشر مسار تعليمي؟ اضغط هنا

الكشف عن المعلومات الخاطئة متعددة اللغات Covid-19 بشأن وسائل التواصل الاجتماعي عبر المدينات السياقية

Detecting Multilingual COVID-19 Misinformation on Social Media via Contextualized Embeddings

369   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم مصنفات التعلم الآلية لتحديد المعلومات الخاطئة COVID-19 تلقائيا على وسائل التواصل الاجتماعي بثلاث لغات: الإنجليزية، البلغارية، والعربية.قمنا بمقارنة 4 نماذج تعليمية متعددة الأيتاكف لهذه المهمة ووجدت أن نموذج مدرب مع بيرت الإنجليزية يحقق أفضل النتائج للغة الإنجليزية، وتحقق بيرت متعددة اللغات أفضل النتائج عن البلغارية والعربية.لقد جربنا لقطة صفرية، وقلة طرية، والظروف المستهدفة فقط لتقييم تأثير بيانات التدريب على اللغة المستهدفة حول أداء المصنف، وفهم قدرات نماذج مختلفة للتعميم عبر اللغات في الكشف عن المعلومات الخاطئة عبر الإنترنت.تم إجراء هذا العمل كإرسال إلى المهمة المشتركة، NLP4IF 2021: مكافحة المعكرات المعاكسة 19.حققت أفضل طرازاتنا ثاني أفضل نتائج اختبار التقييم في البلغارية والعربية بين جميع الفرق المشاركة وحصلت على درجات تنافسية للغة الإنجليزية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

بصرف النظر عن نجاح نهج تعلم النطاق المختلط في مجال التعلم العميق لحل المهام المختلفة لمعالجة اللغة الطبيعية، فإنه لا يقرض حل جماعيا للكشف عن المعلومات الخاطئة من بيانات وسائل التواصل الاجتماعي CovID-19. نظرا للتعقيد المتأصل من هذا النوع من البيانات، الناجمة عن ديناميك (سياقه يتطور بسرعة)، ذات الطابع الدقيق (أنواع الخائن غير غامضة في كثير من الأحيان)، ومتنوعة (الفئات المنحيحة، المحبوسة والتداخل) الطبيعة، من الضروري نموذج فعال لالتقاط كل من السياق المحلي والعالمي للمجال المستهدف. من خلال إجراء تحقيق منهجي، نظهر أن: (1) النماذج المدربة مسبقا مسبقا للمحولات العميقة، المستخدمة عبر تعلم نقل المجال المختلط، جيدة فقط في التقاط السياق المحلي، وبالتالي تظهر تعميم ضعيف، و (2) يمكن أن يستخرج مزيج من النماذج الضحلة المستندة إلى الشبكة والشبكات العصبية التنافسية السياق محليا بالإضافة إلى السياق بشكل فعال بالإضافة إلى البيانات المستهدفة بطريقة هرمية بطريقة هرمية، مما يتيح من تقديم حل أكثر تعميما.
تعتمد منصات وسائل التواصل الاجتماعي عبر الإنترنت على نحو متزايد على تقنيات معالجة اللغة الطبيعية (NLP) للكشف عن محتوى مسيء على نطاق واسع من أجل تخفيف الأضرار التي يسببها لمستخدميها. ومع ذلك، فإن هذه التقنيات تعاني من مختلف تحيزات أخذ العينات والجمعية الموجودة في البيانات التدريبية، والتي غالبا ما تؤدي إلى أداء الفرعية على المحتوى ذي الصلة بالمجموعات المهمشة، مما يحتمل أن يؤدي إلى أضرار غير متناسبة تجاههم. ركزت دراسات حول مثل هذه التحيزات حتى الآن على حفنة فقط من محاور التباينات والمجموعات الفرعية التي تحتوي على التعليقات التوضيحية / المعجم المتاحة. وبالتالي، يتم تجاهل التحيزات المتعلقة بالسياقات غير الغربية إلى حد كبير في الأدبيات. في هذه الورقة، نقدم طريقة خاضعة للإشراف ضعيفا للكشف عن التحيزات المعجمية بقوة في السياقات الجغرافية الثقافية الأوسع نطاقا. من خلال دراسة الحالة حول نموذج كشف للسمية المتوفرة للجمهور، نوضح أن طريقتنا تحدد المجموعات البارزة من الأخطاء المتبادلة الجغرافية، وفي متابعة، توضح أن هذه التجمعات تعكس الأحكام الإنسانية من اللغة الهجومية واللغة الفعلية في تلك السياقات الجغرافية. نحن أيضا إجراء تحليل نموذج تدرب على مجموعة بيانات مع ملصقات الحقيقة الأرضية لفهم هذه التحيزات بشكل أفضل، وتقديم تجارب التخفيف الأولي.
في خضم الوباء العالمي، فهم رأي الجمهور في تدخلات حكومتهم على مستوى السياسة، وغير الدوائية (NPIS) هو عنصر حاسم في عملية صنع السياسات الصحية. عملت العمل المسبق في تحليل معنويات NPI CoviD-19 من قبل المجتمع الوبائي دون إحدى طرق تنسب المعنويات بشكل صحيح ع لى الأحداث، وهي القدرة على التمييز بين تأثير مختلف الأحداث عبر الزمن، وهو نموذج متماسك للتنبؤ برأي الأحداث المستقبلية في المستقبل نفس النوع، ولا حتى وسيلة لإجراء اختبارات الأهمية. نقول هنا أن طريقة التقييم التي كانت حاجة ماسة إليها موجودة بالفعل. في القطاع المالي، دراسات الأحداث التقلبات في سعر الأسهم في شركة تداول الجمهور شائعة لتحديد آثار إعلانات الأرباح، ومواضع المنتجات، وما إلى ذلك. الطريقة نفسها مناسبة لتحليل تباين المشاعر الزمنية في ضوء NPIS على مستوى السياسة وبعد نحن نقدم دراسة حالة عن شعور تويتر تجاه NPIS على مستوى السياسات في كندا. تؤكد نتائجنا على اتصال إيجابي عموما بين إعلانات NPIS ومعنويات تويتر، ونحن نوثق ارتباطا واعدا بين نتائج هذه الدراسة والمسح الصحي العام للامتثال الشعبي للمنظمات غير الحكومية.
في هذه الورقة، نقدم شائعات ARCOV19، ومجموعة بيانات عربية Covid-19 Twitter للكشف عن المعلومات الخاطئة المؤلفة من تغريدات تحتوي على مطالبات من 27 يناير حتى نهاية أبريل 2020. قمنا بجمع 138 مطالبات تم التحقق منها، معظمها من مواقع التحقق من الحقائق الشعبي ة، وحددنا 9.4K تغريدات ذات صلة مع تلك المطالبات. تم فحص التغريدات يدويا بفحصها يدويا لدعم البحوث حول الكشف عن المعلومات الخاطئة، وهي واحدة من المشاكل الرئيسية التي تواجهها خلال جائحة. تدعم شائعات ARCOV19 مستويين من الكشف عن المعلومات الخاطئة على Twitter: التحقق من مطالبات النص الحر (تسمى التحقق من مستوى المطالبة) والتحقق من المطالبات المعبر عنها في تغريدات (تسمى التحقق من مستوى التغريد). أغطية البيانات الخاصة بنا، بالإضافة إلى الصحة، والمطالبات المتعلقة بالفئات الموضعية الأخرى التي تأثرت بالكوفيد 19، وهي الاجتماعية والسياسة والرياضة والترفيه والدينية. علاوة على ذلك، فإننا نقدم نتائج مرجعية للتحقق من المستوى التغردد على DataSet. جربنا نماذج SOTA من النهج التنوعية التي إما استغلال المحتوى، وميزات ملفات تعريف المستخدمين، والميزات الزمنية وهيكل الانتشار من مؤشرات الترابط المحادثة للتحقق من تغريد التغريد.
وقد رافق انتشار Covid-19 بمعلومات مفاجئة واسعة النطاق بشأن وسائل التواصل الاجتماعي.على وجه الخصوص، شهد Twittercrive زيادة كبيرة في نشر الحقائق والأرقام المشوهة.يهدف هذا العمل الحالي إلى تحديد تغريدات بشأن CovID-19 التي تحتوي على معلومات ضارة وخاطئة.ل قد جربنا عددا من النماذج التعلم العميقة، بما في ذلك تضمين كلمة مختلفة، مثل القفازات، إلمو، من بين أمور أخرى.حقق نموذج Bertweet أفضل درجة F1 بشكل عام من 0.881 وأمنت المرتبة الثالثة على المهمة المذكورة أعلاه.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا