استخراج المعلومات والمسألة الإجابة على إمكانية إدخال نموذج جديد لكيفية تطبيق تعلم الجهاز على القانون الجنائي. الأساليب الحالية تستخدم عموما البيانات الجدولية للمقاييس التنبؤية. هناك حاجة إلى نهج بديل لمسائل العدالة العادلة، حيث يتم الحكم على الأفراد على أساس كل حالة على حدة، في عملية تنطوي على مناقشة شفهية أو مكتوبة عوامل الحالات. هذه المناقشات فردية، لكنها تعتمد على الحقائق الأساسية. استخراج المعلومات يمكن أن يلعب دورا مهما في تصفح هذه الحقائق، والتي لا تزال مهمة لفهمها. نقوم بتحليل قدرة النماذج غير الخاضعة للإشراف وإشرافها مسبقا على استخراج هذه المعلومات الواقعية من حوار النماذج الحر لسجناء كاليفورنيا الإفراج المشروط. مع استثناءات قليلة، فإن معظم درجات F1 أقل من 0.85. نحن نستخدم هذه الفرصة لتسليط الضوء على بعض الفرص لمزيد من البحث لاستخراج المعلومات والرد على الأسئلة. نحن نشجع التطورات الجديدة في NLP لتمكين التحليل ومراجعة القضايا القانونية التي يتعين القيام بها بطريقة ما بعد الهوك، وليس التنبؤ بها.
Information extraction and question answering have the potential to introduce a new paradigm for how machine learning is applied to criminal law. Existing approaches generally use tabular data for predictive metrics. An alternative approach is needed for matters of equitable justice, where individuals are judged on a case-by-case basis, in a process involving verbal or written discussion and interpretation of case factors. Such discussions are individualized, but they nonetheless rely on underlying facts. Information extraction can play an important role in surfacing these facts, which are still important to understand. We analyze unsupervised, weakly supervised, and pre-trained models' ability to extract such factual information from the free-form dialogue of California parole hearings. With a few exceptions, most F1 scores are below 0.85. We use this opportunity to highlight some opportunities for further research for information extraction and question answering. We encourage new developments in NLP to enable analysis and review of legal cases to be done in a post-hoc, not predictive, manner.
المراجع المستخدمة
https://aclanthology.org/
اعتمدت نهج استخراج المعلومات الحديثة على تدريب النماذج العصبية العميقة. ومع ذلك، يمكن أن تتجاوز هذه النماذج بسهولة الملصقات الصاخبة وتعاني من تدهور الأداء. في حين أنه من المكلف للغاية تصفية الملصقات الصاخبة في موارد تعليمية كبيرة، فإن الدراسات الحديث
النمطية اللغوية هي مجال من اللغويات المعنية بتحليل ومقارنة بين اللغات الطبيعية للعالم بناء على ميزاتها اللغوية المعينة. لهذا الغرض، تاريخيا، اعتمدت المنطقة على استخراج يدوية لقيم الميزات اللغوية من الأوصاف النصية للغات. هذا يجعلها مهمة شاقة وطولها با
يعد الاتجار بالأشخاص شكلاً جديداً من أشكال العبودية التي عرفتها البشرية، و قد حاول المشرع الدولي أن يكافح هذه الجريمة من خلال بروتوكول منع و قمع و معاقبة الاتجار بالأشخاص و خاصة النساء و الأطفال المكمل لاتفاقية الأمم المتحدة لمكافحة الجريمة المنظمة ع
إن استخلاص المعلومات هي مهمة العثور على المعلومات المنظمة من نص غير
منظم أو نص شبه منظم و هي مهمة هامة في التنقيب بالنصوص و قد تمت دراستها
على نطاق واسع في الأوساط البحثية المختلفة بما في ذلك معالجة اللغة الطبيعية،
و استرجاع المعلومات و التنقيب عل
تبادل مهام التحليل الدلالي الغني، مثل تمثيل المعنى التجريدي (AMR)، أهداف مماثلة مع استخراج المعلومات (أي) تحويل نصوص اللغة الطبيعية إلى تمثيلات دلالية منظم.للاستفادة من مثل هذه التشابه، نقترح إطارا رواية موجه AMR لاستخراج المعلومات المشترك لاكتشاف ال