ترغب بنشر مسار تعليمي؟ اضغط هنا

استكشاف موثوقية الملصقات الذهبية للكشف عن المشاعر في تويتر

Exploring Reliability of Gold Labels for Emotion Detection in Twitter

432   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

جذبت الكشف عن المشاعر من وظائف وسائل التواصل الاجتماعي اهتماما ملحوظا من مجتمع معالجة اللغة الطبيعية (NLP) في السنوات الأخيرة.تختلف طرق الحصول على ملصقات ذهبية لتدريب واختبار أنظمة الكشف عن المشاعر التلقائية بشكل كبير من دراسة واحدة إلى أخرى، وتشكل مسألة موثوقية الملصقات الذهبية وتحصل على نتائج التصنيف.تستكشف هذه الدراسة بشكل منهجي عدة طرق للحصول على ملصقات ذهبية لنموذج EKMAN الخاص ببيانات Twitter وتأثير الاستراتيجية المختارة في نتائج التصنيف اليدوي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

كشف العاطفة مهمة مهمة يمكن تطبيقها على بيانات وسائل التواصل الاجتماعي لاكتشاف المعرفة الجديدة.في حين أن استخدام طرق التعلم العميق لهذه المهمة كان سائدا، فهي نماذج من الصندوق الأسود، مما يجعل قراراتها بجد لتفسير مشغل بشري.لذلك، في هذه الورقة، نقترح نه جا باستخدام Kevent Kearbors المرجح (KNN)، وهو نموذج تعليمي بسيط وسهل تنفيذي وشرحه.هذه الصفات يمكن أن تساعد في تعزيز موثوقية النتائج وتحليل الأخطاء التوجيه.على وجه الخصوص، نطبق نموذج KNN المرجح بمهمة الكشف عن العاطفة المشتركة في تغريدات Semeval-2018.يتم تمثيل التغريدات باستخدام أساليب مختلفة لتضمين نصية وعشرات المفردات المعجمية العاطفة، ويتم التصنيف من قبل مجموعة من نماذج KNN المرجحة.تتمتع أفضل أساليبنا بنتائج تنافسية مع حلول حديثة وفتح مسارا بديلا واعدا لأساليب الشبكة العصبية.
في هذه الورقة، نصف التجارب المصممة لتقييم تأثير الميزات المصنوعة من النسيج والعاطفة على الكشف عن الكلام الكراهية: مهمة تصنيف المحتوى النصي في فئات الكلام الكراهية أو غير الكراهية. تجري تجاربنا لمدة ثلاث لغات - اللغة الإنجليزية والسلوفين والهولندية - سواء في النطاق داخل المجال والمجازات، وتهدف إلى التحقيق في خطاب الكراهية باستخدام ميزات النموذجتين الظواهر اللغوية: أسلوب كتابة محتوى الوسائط الاجتماعية البغيضة تعمل كمستخدم Word كدالة على يد واحدة، وتعبير العاطفة في الرسائل البغيضة من ناحية أخرى. نتائج التجارب التي تحتوي على ميزات نموذج مجموعات مختلفة من هذه الظواهر تدعم فرضيتنا أن الميزات الأسيزية والعاطفية هي مؤشرات قوية لخطاب الكراهية. تظل مساهمتها مستمرة فيما يتعلق باختلاف المجال واللغة. نظظ أن مزيج من الميزات التي تتفوقت الظواهر المستهدفة على الكلمات والشخصيات N-Gram الميزات بموجب ظروف عبر المجال، وتوفر دفعة كبيرة لنماذج التعلم العميق، والتي تحصل حاليا على أفضل النتائج، عند دمجها في مجموعة واحدة وبعد
يستلزم الكشف عن الموقف (SD) تصنيف معنويات نص تجاه هدف معين، وهي مهمة فرعية ذات صلة لتحليل تعدين الرأي والوسائط الإعلامية الاجتماعية.وقد استكشفت الأعمال الحديثة تسريب المعرفة تكمل الكفاءة اللغوية والمعرفة الكامنة عن النماذج اللغوية الكبيرة المدربة مسب قا مع الرسوم البيانية المعرفة المهيكلة (KGS)، ومع ذلك فقد طبقت القليل من الأعمال هذه الأساليب إلى مهمة SD.في هذا العمل، نقوم أولا بتحقيق المعرفة ذات الصلة بالموقف على النماذج المدربة المستندة مسبقا للمحولات في إعداد تسديدة صفرية، مما يدل على المعرفة الحقيقية الكامنة في النماذج حول أهداف SD وحساستها للسياق.ثم ندرب وتقييم نماذج الكشف عن الموقف المخصب على المعرفة على مجموعة بيانات لموقف Twitter، وتحقيق أداء حديثة على حد سواء.
كان هناك طلب متزايد لتطوير أنظمة التدريب اللغوية بمساعدة الكمبيوتر (النقص)، والتي يمكن أن توفر ملاحظات حول سوء الأخطاء وتسهيل المتعلمين اللغة الثانية (L2) لتحسين إجادتها الناطقة من خلال الممارسة المتكررة. نظرا لنقص الكلام غير الأصلي لتدريب الوحدة الن مطية للتعرف على الكلام التلقائي (ASR) من نظام النقيب، فإن أداء الكشف عن الأخطاء السخطية المقابلة غالبا ما يتأثر بشكل غالبا بواسطة unffect ASR. وإذ تدرك هذه الأهمية، فإننا في هذه الورقة طرحت طريقة اكتشاف أخطاء أخطاء في مرحلتين. في المرحلة الأولى، تتم معالجة الخطاب الذي ينطقه متعلم L2 من خلال وحدة ASR المناسبة لإنتاج فرضيات تسلسل الهاتف N-Best. في المرحلة الثانية، يتم تغذية هذه الفرضيات في نموذج النطق الذي يسعى إلى التنبؤ بأمانة بفرض رسوم تسلسل الهاتف الذي هو على الأرجح واضحا من قبل المتعلم، وذلك لتحسين أداء اكتشاف أخطاء أخطاء. أجرت التجارب التجريبية مجموعة بيانات قياسية باللغة الإنجليزية تأكيد فائدة طريقتنا.
في هذه الورقة، نقدم مجموعة بيانات جديدة تستند إلى Twitter للكشف عن السيبراني وإساءة استخدام عبر الإنترنت.تضم هذه البيانات التي تضم 62،587 تغريدات، تم الحصول على هذه البيانات من تويتر باستخدام شروط استعلام محددة تهدف إلى استرداد تغريدات مع احتمالات عا لية من أشكال مختلفة من البلطجة والمحتوى المسيء، بما في ذلك الإهانة والتصيد والبهجة والسخرية والتهديد والإباحية والاستبعاد.لقد قامنا بتجنيد مجموعة من 17 ملقاة لأداء التعليق التوضيحي بحبائهم الجميلة على مجموعة بيانات كل تغريدة موضحة بمثابة ثلاثة محنوح.جميع الحناحيين لدينا هي مستخدمي التعليم العالي والمتكرر في المدرسة الثانوية.اتفاقية المشتركة بين الخصوصية لأن مجموعة البيانات التي تقاسها Krippendorff's ألفا هي 0.67.تم تأكيد التحليلات التي أجريتها في مجموعة بيانات الموضوعات الإلكترونية المشتركة التي أبلغت عن دراسات أخرى وكشفت علاقات مثيرة للاهتمام بين الطبقات.تم استخدام DataSet لتدريب عدد من نماذج التعلم العميقة المستندة إلى المحولات التي تعود إلى نتائج مثيرة للإعجاب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا