تهدف الترجمة التكيفية إلى تضمين ملاحظات المستخدمين بشكل حيوي لتحسين جودة الترجمة. في سيناريو ما بعد التحرير، يتم إدراج تصحيحات المستخدم لإخراج الترجمة الآلي باستمرار في نماذج الترجمة، أو تقليل أو إلغاء تحرير الأخطاء المتكررة وزيادة فائدة الترجمة الآلية. في الترجمة الآلية العصبية، قد يتحقق هذا الهدف عبر مناهج التعلم عبر الإنترنت، حيث يتم تحديث معلمات الشبكة بناء على كل عينة جديدة. يتطلب هذا النوع من التكيف عادة معدلات تعليمية أعلى، والتي يمكن أن تؤثر على جودة النماذج مع مرور الوقت. بدلا من ذلك، قد تحافظ إعدادات التعلم عبر الإنترنت الأقل عدوانية على الاستقرار النموذجي، بتكلفة تقليل التكيف مع التصحيحات التي تم إنشاؤها بواسطة المستخدم. في هذا العمل، نقوم بتقييم تكوينات التعلم المختلفة عبر الإنترنت مع مرور الوقت، وقياس تأثيرها على العينات التي تم إنشاؤها من قبل المستخدم، وكذلك مجموعات بيانات داخل المجال والخروج من المجال. تشير النتائج في مجالين مختلفين إلى أن الأساليب المختلطة التي يجمع بين التعلم عبر الإنترنت مع ضبط الدفعة الدائمة قد تكون هناك حاجة إلى توازن بين فوائد التعلم عبر الإنترنت مع الاستقرار النموذجي.
Adaptive Machine Translation purports to dynamically include user feedback to improve translation quality. In a post-editing scenario, user corrections of machine translation output are thus continuously incorporated into translation models, reducing or eliminating repetitive error editing and increasing the usefulness of automated translation. In neural machine translation, this goal may be achieved via online learning approaches, where network parameters are updated based on each new sample. This type of adaptation typically requires higher learning rates, which can affect the quality of the models over time. Alternatively, less aggressive online learning setups may preserve model stability, at the cost of reduced adaptation to user-generated corrections. In this work, we evaluate different online learning configurations over time, measuring their impact on user-generated samples, as well as separate in-domain and out-of-domain datasets. Results in two different domains indicate that mixed approaches combining online learning with periodic batch fine-tuning might be needed to balance the benefits of online learning with model stability.
المراجع المستخدمة
https://aclanthology.org/
تعرض نهج الترجمة الآلية العصبية (NMT) التي توظف بيانات أحادية الأحادية تحسينات ثابتة في الظروف الغنية بالموارد. ومع ذلك، فإن التقييمات باستخدام لغات العالم الحقيقي LowResource لا تزال تؤدي إلى أداء غير مرضي. يقترح هذا العمل نهج نمذجة Zeroshot NMT NMT
الترجمة التنبؤية التفاعلية هي عملية تكرارية تعاونية وحيث تنتج مترجمات البشر الترجمات بمساعدة أنظمة الترجمة الآلية (MT) بشكل تفاعلي. توجد تقنيات أخذ العينات المختلفة في التعلم النشط (AL) لتحديث نموذج MT (NMT) العصبي في السيناريو التفاعلي التنبؤ بالتنب
أصبحت الترجمة المرجودة (BT) واحدة من مكونات الأمر الواقع في الترجمة الآلية العصبية غير المنشأة (UNMT)، ويجعل صراحة لديها القدرة على الترجمة. ومع ذلك، يتم التعامل مع جميع النصوص الثنائية الزائفة التي تم إنشاؤها بواسطة BT بنفس القدر كبيانات نظيفة أثناء
تتطلب أساليب التعلم المنهج الحالية للترجمة الآلية العصبية (NMT) أخذ العينات مبالغ كافية من العينات "من بيانات التدريب في مرحلة التدريب المبكر. هذا غير قابل للتحقيق دائما لغات الموارد المنخفضة حيث تكون كمية البيانات التدريبية محدودة. لمعالجة مثل هذا ا
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد