ترغب بنشر مسار تعليمي؟ اضغط هنا

كفاءة النص متعدد اللغات التصنيف اللغات الهندية

Efficient Multilingual Text Classification for Indian Languages

611   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الهند هي واحدة من أغنى مراكز اللغات على الأرض وهي متنوعة للغاية وتعدد اللغات. ولكن بصرف النظر عن عدد قليل من اللغات الهندية، ما زال معظمهم يعتبرون فقراء الموارد. نظرا لأن معظم تقنيات NLP تتطلب معرفة لغوية لا يمكن تطويرها إلا من قبل الخبراء والمتحدثين الأصليين في هذه اللغة أو أنها تتطلب الكثير من البيانات المسمى باهظة الثمن مرة أخرى لتوليد، فإن مهمة تصنيف النص تصبح تحديا لمعظم الهندي اللغات. الهدف الرئيسي من هذه الورقة هو معرفة كيف يمكن للمرء الاستفادة من التشابه المعجمي الموجود باللغات الهندية في سيناريو متعدد اللغات. هل يمكن إعادة استخدام نموذج تصنيف مدرب على لغة هندية واحدة لغات هندية أخرى؟ لذا، أجرينا تصنيف نصي بالرصاص عن طريق استغلال التشابه المعجمي وملاحظ أن طرازنا ينفذ بشكل أفضل في تلك الحالات حيث يتداخل المفردات بين مجموعات البيانات اللغوية كحد أقصى. تؤكد تجاربنا أيضا أن نموذجا واحدا متعدد اللغات مدرب عبر رابط استغلال اللغة يتفوق على الأساس من الهوامش الهامة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعرف الهند باسم أرض العديد من الألسنة واللهجات. الترجمة الآلية العصبية (NMT) هي النهج الحديث الحالي للترجمة الآلية (MT) ولكنه يعمل بشكل أفضل فقط مع مجموعات البيانات الكبيرة التي تفتقر إليها اللغات الهندية عادة، مما يجعل هذا النهج غير قابل للاستمرار. لذلك، في هذه الورقة، نتعامل مع مشكلة ندرة البيانات من خلال تدريب أنظمة NMT متعددة اللغات متعددة اللغات وغير اللغوية التي تنطوي على لغات ?????? ????????????. نحن نقترح تقنية استخدام علامات المجال واللغة المشتركة في إعداد متعدد اللغات. نرسم ثلاث استنتاجات رئيسية من تجاربنا: (1) تدريب نظام متعدد اللغات عبر استغلال التشابه المعجمي على أساس الأسرة اللغوية يساعد في تحقيق متوسط ​​تحسن إجمالي ?. تساعد الرموز اللغوية على نظام المجال متعدد اللغات في الحصول على تحسين متوسط ​​متوسط ​​? ???? ?????? على أساس الأساس، (3) يساعد المرابط بشكل جيد على تحسين تحسين ?-?.? ???? ?????? للحصول على زوج لغة الاهتمام وبعد
تصف هذه الورقة العمل والأنظمة المقدمة من فريق IIIT-HYDERBAD في مهمة WAT 2021 Multiindicmt المشتركة. تغطي المهمة 10 لغات رئيسية من شبه القارة الهندية. بالنسبة لنطاق هذه المهمة، قمنا ببناء أنظمة متعددة اللغات لمدة 20 ساعة توسيعية وهي الإنجليزية-MED (ON E-LICONE) وإرش إنجليزي (كثير إلى واحد). منفردة، اللغات الهندية هي فقراء الموارد التي تعيق جودة الترجمة ولكن من خلال الاستفادة من تعدد اللغات والهدوضة غير اللغوية والنباتية، يمكن تعزيز جودة الترجمة بشكل كبير. لكن أنظمة متعددة اللغات معقدة للغاية من حيث الوقت وكذلك الموارد الحسابية. لذلك، نحن ندرب أنظمتنا من خلال إلقاء البيانات الكفاءة التي سيساهم في الواقع في معظم عملية التعلم. علاوة على ذلك، نحن نستغل أيضا اللغة المتعلقة بعثر بين اللغات الهندية. تم إجراء جميع المقارنات باستخدام نقاط بلو ووجدت أن نظامنا متعدد اللغات النهائي يتفوق بشكل كبير على خطوط الأساس بمعدل 11.3 و 19.6 نقاط بلو لترويج الإنجليزي (EN-XX) وإرادي الإنشاءات الإنجليزي (XX-EN) ، على التوالى.
الأساليب القائمة على المحولات جذابة لتصنيف النص متعدد اللغات، ولكن معايير البحوث الشائعة مثل XNLI (Conneau et al.، 2018) لا تعكس توافر البيانات ومجموعة واسعة من تطبيقات الصناعة.نقدم مقارنة تجريبية من نماذج تصنيف النص المستند إلى المحولات في مجموعة مت نوعة من إعدادات الاحتياطية وغير اللغوية المتعددة اللغات والضبط.نقيم هذه الأساليب على مهمتين متميزتين في خمس لغات مختلفة.المغادرة من العمل السابق، تظهر نتائجنا أن نماذج لغة متعددة اللغات يمكن أن تتفوق على تلك المهام المطردة في بعض المهام المصب واللغات المستهدفة.نوضح بالإضافة إلى ذلك أن التعديلات العملية مثل المهام وعمالة العمل التكيفية والتكييف يمكن أن تحسن أداء التصنيف دون الحاجة إلى بيانات إضافية إضافية.
لقد ظهرت وحدات محول كوسيلة فعالة من المعلمات لتخصص التشفير المسبق على المجالات الجديدة. استفادت محولات متعددة اللغات بشكل كبير (MMTS) بشكل خاص من التدريب الإضافي للمحولات الخاصة باللغة. ومع ذلك، فإن هذا النهج ليس قابلا للتطبيق بالنسبة للغالبية العظمى من اللغات، بسبب القيود في حجم الشقوق أو حساب الميزانيات. في هذا العمل، نقترح جنون G (جيل محول متعدد اللغات)، الذي يولد محولات لغة محلية من تمثيلات اللغة بناء على الميزات النموذجية. على عكس العمل السابق، يتيح نهجنا المجنون بوقتنا وفعال الفضاء (1) تبادل المعرفة اللغوية عبر اللغات و (2) استنتاج صفرية عن طريق توليد محولات لغة للغات غير المرئية. نحن نقيم بدقة جنون G في النقل الصفر - نقل عبر اللغات على علامة جزء من الكلام، وتحليل التبعية، والاعتراف كيان المسمى. أثناء تقديم (1) تحسين كفاءة ضبط الدقيقة (1) من خلال عامل حوالي 50 في تجاربنا)، (2) ميزانية معلمة أصغر، و (3) زيادة تغطية اللغة، لا تزال جنون جي تنافسية مع أساليب أكثر تكلفة للغة تدريب محول محدد في جميع اللوحة. علاوة على ذلك، فإنه يوفر فوائد كبيرة لغات الموارد المنخفضة، لا سيما في مهمة NER في لغات أفريقية منخفضة الموارد. أخيرا، نوضح أن أداء نقل جنون جي يمكن تحسينه عبر: (1) التدريب متعدد المصادر، أي، من خلال توليد ومجتمعة محولات لغات متعددة مع بيانات التدريب الخاصة بمهام المهام المتاحة؛ و (2) عن طريق مزيد من ضبط محولات جنون G للغات ولغات مع بيانات أحادية الأونلينغ.
توضح هذه الورقة تقديم TENTRANS إلى مهمة مشتركة من Translation Translation منخفضة اللغات WMT21 لأزواج اللغة الرومانسية.تركز هذه المهمة على تحسين جودة الترجمة من الكاتالونية إلى Occitan والرومانية والإيطالية، بمساعدة لغات الموارد ذات الصلة ذات الصلة.نح ن نستخدم أساسا الترجمة المرجانية، والطرق القائمة على المحور، ونماذج متعددة اللغات، ونقل النموذج المدربين مسبقا، ونقل المعرفة داخل المجال لتحسين جودة الترجمة.في مجموعة الاختبار، يحقق نظامنا الأفضل المقدم بمتوسط 43.45 درجات بلو حساسة لحالة الأحرف عبر جميع أزواج الموارد المنخفضة.تتوفر بياناتنا ورمز النماذج المدربة مسبقا مسبقا في هذا العمل في أمثلة تقييم Tentrans.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا