ترغب بنشر مسار تعليمي؟ اضغط هنا

الكشف عن السخرية وبناء كوربوس اللغة الإنجليزية في الوقت الحقيقي

Sarcasm Detection and Building an English Language Corpus in Real Time

341   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

هذا اقتراح بحثي لأبحاث الدكتوراه في اكتشاف السخرية، والترجمة في الوقت الحقيقي لجور اللغة الإنجليزية من الكلمات الساخرة.تفاصيل البحث السابق في مواضيع مماثلة، اتجاهات البحث المحتملة والأهداف البحثية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في الترجمة الآلية، يعد إعداد Corpus أحد المهام الحاسمة، خاصة لأزواج منخفضة.في بلدان متعددة اللغات مثل الهند، تلعب الترجمة الآلية دورا حيويا في التواصل بين الأشخاص الذين لديهم خلفيات لغوية مختلفة.تتوفر أنظمة الترجمة الآلية المتوفرة عبر الإنترنت من قبل Google و Microsoft والتي تشمل لغات مختلفة تفتقر إلى الدعم لغلق Khasi، والتي يمكن اعتبارها LonResource.نظرة عامة على هذه الورقة تطوير ENKHCCORP1.0، وهي كوربوس للإنجليزية - Khasi Pair، ونفذت أنظمة أساسية للترجمة الإنجليزي Englishtokhasi و Khasitoenglish بناء على نهج ترجمة الآلات العصبية.
الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام ا لفرعية لورشة معالجة اللغات الطبيعية العربية السادسة (WANLP)؛تحليل السخرية وتحليل المعنويات.المنهجيات الخاصة بنا مدفوعة بفرضية أن التغريدات ذات الشعور السلبي والثغرات السلبية مع محتوى السخرية من غير المرجح أن يكون لها محتوى مسيء، وبالتالي، تؤدي إلى ضبط طراز التصنيف باستخدام كوربوس كبيرة من اللغة المسيئة، عملية التعلم للنموذج للكشف بشكل فعالالمعنويات ومحتويات السخرية.توضح النتائج فعالية نهجنا لمهمة الكشف عن السخرية على مهمة تحليل المعنويات.
نقدم HATEBERT، نموذج BERT الذي تم تدريبه على إعادة تدريب للكشف عن اللغة المسيئة باللغة الإنجليزية.تم تدريب النموذج على RAL-E، وهي مجموعة بيانات واسعة النطاق من تعليقات Reddit باللغة الإنجليزية من المجتمعات المحظورة لكونها مسيئة أو بغيضة حيث قمنا بإتا حتها للجمهور.نقدم نتائج مقارنة مفصلة بين نموذج اللغة المدرب مسبقا والنسخة المستقلة على ثلاث مجموعات بيانات باللغة الإنجليزية لمهام الهجومية والمسيئة ومهام الكشف عن الكلام.في جميع مجموعات البيانات، تتفوق HateBERT على نموذج بيرت العام.ونناقش أيضا مجموعة تجارب تقارن إمكانية نقل النماذج الصعبة في مجموعات البيانات، مما يشير إلى أن القدرة على التأثر بالتوافق مع الظواهر المشروحة.
الكشف عن السخري مهم بالنسبة للعديد من مهام NLP مثل تحديد المعنويات في مراجعات المنتج وملاحظات المستخدم والمنتديات عبر الإنترنت.إنها مهمة صعبة تتطلب فهم عميق للغة والسياق والمعرفة العالمية.في هذه الورقة، نحقق ما إذا كانت دمج المعرفة المنطقية تساعد في الكشف عن السخرية.بالنسبة لهذا، فإننا ندمج معارف المنطقية في عملية التنبؤ باستخدام شبكة استئصال الرسم البياني مع تضيير نموذج اللغة المدرب مسبقا كمدخلات.تشير تجاربنا المزودة بثلاث مجموعات بيانات للكشف عن السخرية إلى أن النهج لا يتفوق على النموذج الأساسي.نحن نقوم بإجراء مجموعة شاملة من التجارب لتحليل المكان الذي يضيف فيه دعم المنطقي قيمة وأين يضر التصنيف.ينطبق تنفيذنا علنا على: https://github.com/brcsomnath/commonseense-sarasmasr.
نقدم نظاما لدعم الترجمة الفورية في مجالات محددة.سيتم تطوير النظام من خلال تآزر قوي بين الفنيين، معظمهم من الخبراء في كل من كل من الكلام ومعالجة النصوص والنص، والمستخدمين النهائيين، I.E. المترجمين الفوريين المحترفين الذين يحددون المتطلبات وسيقوم باختب ار المنتج النهائي.تم تحقيق بعض النتائج المشجعة الأولية على اختبارات القياسية التي تم جمعها بهدف قياس أداء المكونات الفردية للنظام بأكمله، وهي: التعرف التلقائي على الكلام (ASR) والاعتراف الكياري المسمى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا