تقدم هذه الورقة وصفا للمهمة المشتركة Rocling 2021 في تحليل المعنويات الأبعاد للنصوص التعليمية.قدمنا اثنين من أشواط في الاختبار النهائي.كلا يدير يستخدم نموذج الانحدار القياسي.يستخدم Run1 الإصدار الصيني من Bert كقاعدة، وفي Run2 نستخدم الإصدار المبكر من Macbert أن النسخة الصينية من نموذج روبرتا يشبه BERT، Roberta-WWM-Ext.باستخدام نموذج قوي قبل التدريب من بيرت لتضمين النص للمساعدة في تدريب النموذج.
This paper present a description for the ROCLING 2021 shared task in dimensional sentiment analysis for educational texts. We submitted two runs in the final test. Both runs use the standard regression model. The Run1 uses Chinese version of BERT as the base, and in Run2 we use the early version of MacBERT that Chinese version of RoBERTa-like BERT model, RoBERTa-wwm-ext. Using powerful pre-training model of BERT for text embedding to help train the model.
المراجع المستخدمة
https://aclanthology.org/
نحن نستخدم محولات Macbert وضبطها بشكل جيد على المهام المشتركة Rocling-2021 باستخدام بيانات CVAT و CVAS.قارنا أداء ماكبيرت مع اثنين من المحولاتين الآخرين وروبرتا في الأبعاد الإثارة، على التوالي.تم استخدام معامل ماي والارتباط (ص) كمقاييس التقييم.على مج
في هذه المهمة المشتركة، تقترح هذه الورقة طريقة للجمع بين نموذج ناقلات Word القائم على BERT ومقدمة تنبؤ LSTM للتنبؤ بقيم التكافؤ والإثارة في النص.من بينها، ناقل الكلمات المستند إلى بيرت هو 768 ثيم، ويتم تغذية كل ناقلات كلمة في الجملة بالتتابع لطراز LS
في هذه الورقة، اقترحنا محلل دلالي أبعاد بر فندقية، وهو مصمم من خلال دمج معلومات على مستوى Word.حقق نموذجنا ثلاثة من أفضل النتائج في أربعة مقاييس على rocling 2021 المهمة المشتركة: تحليل المعنويات الأبعاد للنصوص التعليمية ".أجرينا سلسلة من التجارب لمقا
تقدم هذه الورقة المهمة المشتركة 2021 على تحليل المشاعر الأبعاد للنصوص التعليمية التي تسعى إلى تحديد درجة المعنويات ذات القيمة الحقيقية لتعليقات التقييم الذاتي كتبها الطلاب الصينيين في كل من التكافؤ والأبعاد الإثراية.يمثل Valence درجة المشاعر اللطيفة
يهدف هذا التقرير الفني إلى المهمة المشتركة في Rocling 2021: تحليل المعنويات الأبعاد للنصوص التعليمية.من أجل التنبؤ بالحالات العاطفية للنصوص التعليمية الصينية، نقدم إطارا عمليا من خلال توظيف نماذج اللغة المدربة مسبقا، مثل بيرت و Macbert.يمكن استخلاص ا