في هذه الورقة، نقدم نظامنا الذي شاركناه في مهمة Semeval Semeval Semeval Semeval 2021. في تجاربنا، حققنا في إمكانية استخدام نظام غموض من معنى الكلام من الكلمات الدقيقة التي تم تدريبها على البيانات المشروحة ذات الإحساس باللغة الإنجليزية ورسم تنبؤات على التكافؤ الدلالي للكلمات في السياق بناء على تشابه القوائم المرتبة يتعين اتخاذ إجراءات Wordnet (الإنجليزية) التي تم إرجاعها لقرارات الكلمات المستهدفة. نغلبنا على الجوانب المتعددة، والأشياء عبر اللغات من المهمة المشتركة من خلال تطبيق محول متعدد اللغات لترميز النصوص المكتوبة في اللغة العربية والإنجليزية والفرنسية والروسية والصينية. في حين أن نتائجنا تتأخر وراء التقديمات الكبيرة التقديرات، إلا أنها تتمتع بالفائدة التي لا توفر فقط علم ثنائي سواء كانت كلمتين في سياقها لها نفس المعنى، ولكنها توفر أيضا إخراج أكثر ملموسة في شكل قائمة في المرتبة (الإنجليزية) يتخلخل Wordnet بغض النظر عن لغة نصوص الإدخال. نظرا لأن إطارنا مصمم ليكون عاميا قدر الإمكان، فيمكن تطبيقه كأساس أساسي لأي لغة (مدعومة من الهندسة المعمارية المتعددة اللغات المستخدمة) حتى في غياب أي شكل إضافي من بيانات التدريب المحددة للغة.
In this paper, we introduce our system that we participated with at the multilingual and cross-lingual word-in-context disambiguation SemEval 2021 shared task. In our experiments, we investigated the possibility of using an all-words fine-grained word sense disambiguation system trained purely on sense-annotated data in English and draw predictions on the semantic equivalence of words in context based on the similarity of the ranked lists of the (English) WordNet synsets returned for the target words decisions had to be made for. We overcame the multi,-and cross-lingual aspects of the shared task by applying a multilingual transformer for encoding the texts written in either Arabic, English, French, Russian and Chinese. While our results lag behind top scoring submissions, it has the benefit that it not only provides a binary flag whether two words in their context have the same meaning, but also provides a more tangible output in the form of a ranked list of (English) WordNet synsets irrespective of the language of the input texts. As our framework is designed to be as generic as possible, it can be applied as a baseline for basically any language (supported by the multilingual transformed architecture employed) even in the absence of any additional form of language specific training data.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقدم المهمة السامية الأولى على الغموض المتعددة اللغات والبلاية في السياق (MCL-WIC). تتيح هذه المهمة القدرة الكامنة التي تم التحقيق بها إلى حد كبير من القدرة المتأصلة إلى حد كبير في التمييز بين حواس الكلمات داخل وبصور اللغات المراد تقيي
تقدم هذه الورقة نظام الغموض في السياق.تركز المهمة على التقاط الطبيعة Polysemous للكلمات في بيئة متعددة اللغات واللغة اللغوية، دون النظر في جرد صارم من معاني الكلمات.يطبق النظام خوارزميات معالجة اللغة الطبيعية على مجموعات البيانات من مهمة Semeval 2021
نقوم بتجربة XLM Roberta for Word في سياق الغموض في الإعداد اللغوي متعدد اللغات والصليب لتطوير نموذج واحد لديه معرفة حول كلا الإعدادات.نحل المشكلة كمشكلة تصنيف ثنائية وكذلك تجربة تكبير البيانات وتقنيات التدريب الخصم.بالإضافة إلى ذلك، نقوم أيضا بتجربة
في هذا العمل، نقدم نهجنا لحل المهمة Semeval 2021 2: الغموض المتعددة اللغات والتبلغة في السياق (MCL-WIC). المهمة هي مشكلة تصنيف زوج الجملة حيث يكون الهدف هو اكتشاف ما إذا كانت كلمة معينة مشتركة بين كل من الجمل تثير نفس المعنى. نقدم أنظمة لكلا الإعدادا
تحديد ما إذا كانت الكلمة تحمل نفس المعنى أو المعنى المختلف في سياقتين هي منطقة بحثية مهمة في معالجة اللغة الطبيعية تلعب دورا مهما في العديد من التطبيقات مثل الإجابة على الأسئلة، وملخص الوثائق، واسترجاع المعلومات واستخراج المعلومات واستخراج المعلومات.