ترغب بنشر مسار تعليمي؟ اضغط هنا

كيف "فتح" هي المحادثات التي تحتوي على chatbots المجال المفتوح؟اقتراح للتقييم القائم على أحداث الكلام

How ``open'' are the conversations with open-domain chatbots? A proposal for Speech Event based evaluation

327   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

من المفترض أن يتحدث Chatbots المجال المفتوح بحرية مع البشر دون أن يقتصر على موضوع أو مهمة أو مجال. ومع ذلك، فإن حدود و / أو محتويات المحادثات المفتوحة ليست واضحة. لتوضيح حدود الانفتاح "، نقوم بإجراء دراستين: أولا، نقوم بتصنيف أنواع أحداث الكلام" واجهتها في مجموعة بيانات تقييم ChatBot (أي مينا من Google) وتجد أن هذه المحادثات تغطي بشكل أساسي الكلام الصغير بشكل أساسي "الفئة واستبعاد وفئات أحداث الكلام الأخرى التي تواجهها في الحياة البشرية الحقيقية البشرية. ثانيا، نقوم بإجراء دراسة تجريبية صغيرة على نطاق واسع لتوليد محادثات عبر الإنترنت تغطي مجموعة واسعة من فئات أحداث الكلام بين إطارين مقابل رجل بشري وحديث من شاتبوت (I.E.، خلاط على Facebook). يشير التقييم البشري لهذه المحادثات الناتجة إلى تفضيل للمحادثات البشرية، لأن محادثات الإنسان التي تشاتبوت تفتقر إلى التماسك في معظم فئات أحداث الكلام. بناء على هذه النتائج، نقترح (أ) استخدام مصطلح الحديث الصغير "بدلا من المجال المفتوح" للاتحاد الحالي الذي لا يفتح "من حيث قدرات المحادثة بعد، و (ب) مراجعة أساليب التقييم لاختبار محادثات Chatbot ضد أحداث الكلام الأخرى.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يسأل الأسئلة المفتوحة الإجابة على تحديد إجابات الأسئلة التي أنشأتها المستخدم في مجموعات ضخمة من المستندات. أساليب Readriever-Reverse Graph النهج هي أسران كبيرتان من الحلول لهذه المهمة. يطبق قارئ المسترد أولا تقنيات استرجاع المعلومات للحصول على تحديد عدد قليل من الممرات التي من المحتمل أن تكون ذات صلة، ثم تغذي النص المسترد إلى قارئ شبكة عصبي لاستخراج الإجابة. بدلا من ذلك، يمكن بناء الرسوم البيانية المعرفة واستفسارها للإجابة على أسئلة المستخدمين. نقترح خوارزمية مع تصميم رواية Reader-Reader - يختلف عن كل من العائلات. يستخدم Reader-Retriever أولا قارئ حاليا لقراءة الكائن وإنشاء مجموعات من جميع الأسئلة المجدية المرتبطة بإجاباتهم، ثم يستخدم المسترد عبر الإنترنت للاستجابة لاستعلامات المستخدم من خلال البحث في مساحات الأسئلة التي تم إنشاؤها مسبقا للحصول على إجابات أكثر احتمالا أن يطلب في الطريقة المحددة. ندمج مزيد من الجمع بين قارئ المسترجع واحد واسترجاع القارئين في نموذج هجين يسمى R6 لأفضل أداء. تبين تجارب مع مجموعة بيانات عامة واسعة النطاق أن R6 يحقق دقة حديثة.
الهدف الشامل من معالجة اللغة الطبيعية هو تمكين الآلات من التواصل بسلاسة مع البشر.ومع ذلك، يمكن أن تكون اللغة الطبيعية غامضة أو غير واضحة.في حالات عدم اليقين، يشارك البشر في عملية تفاعلية تعرف باسم الإصلاح: طرح الأسئلة والسعي للحصول على توضيح حتى يتم حل حالة عدم اليقين.نقترح إطارا لبناء نموذج لسؤال أسئلة بصريا قادرة على إنتاج أسئلة توضيحات القطبية (نعم لا) لحل سوء الفهم في الحوار.يستخدم نموذجنا هدف معلومات متوقعة اكتبا لصالح أسئلة مفيدة من Captioner صورة خارج الرف دون الحاجة إلى أي بيانات للإجابة على الأسئلة الخاضعة للإشراف.نوضح قدرة النموذج لدينا على طرح الأسئلة التي تحسن النجاح التواصل في لعبة 20 أسئلة موجهة نحو الأهداف مع الإجابات الاصطناعية والإنسانية.
التلخصات القائمة على الجانب المجردة هي مهمة توليد ملخصات مركزة تستند إلى نقاط اهتمام محددة. هذه الملخصات تساعد تحليل فعال للنص، مثل فهم الاستعراضات أو الآراء بسرعة من زوايا مختلفة. ومع ذلك، نظرا للاختلافات الكبيرة في نوع الجوانب لمجالات مختلفة (مثل ا لمشاعر، ميزات المنتج)، تميل تطوير النماذج السابقة إلى أن تكون خاصة بالمجال. في هذه الورقة، نقترح WikiAsp، 1 مجموعة بيانات واسعة النطاق لتلخيص القائم على الجانب متعدد المجالات التي تحاول تحفيز البحث في اتجاه التلخيص المستند إلى جانب النطاق. على وجه التحديد، نبني DataSet باستخدام مقالات Wikipedia من 20 مجالات مختلفة، باستخدام عناوين القسم وحدود كل مقال كوكيل للتعليق على الجانب. نقترح العديد من النماذج الأساسية المباشرة لهذه المهمة وإجراء تجارب على مجموعة البيانات. تسليط الضوء على النتائج التحديات الرئيسية التي تواجهها نماذج التلخيص الموجودة في هذا الإعداد، مثل التعامل مع الضمير المناسب للمصادر المعروضة والشرح المستمر للأحداث الحساسة للوقت.
مجردة ⚠ تحتوي هذه الورقة على مطالبات ونواتج النماذج المسيئة في الطبيعة. عند التدريب على الزحف الكبيرة وغير المرفقة من الإنترنت، تلتقط نماذج اللغة وإعادة إنتاج جميع أنواع التحيزات غير المرغوب فيها التي يمكن العثور عليها في البيانات: أنها غالبا ما تولد لغة عنصرية أو جنسية أو عنيفة أو غير سامة. نظرا لأن النماذج الكبيرة تتطلب ملايين الأمثلة التدريبية لتحقيق أداء جيد، فمن الصعب منعها تماما من التعرض لمثل هذا المحتوى. في هذه الورقة، نوضح أولا في العثور على إيجاد مفاجئ: تعترف نماذج اللغة المحددة، إلى درجة كبيرة، تحيزاتهم غير المرغوب فيها وسمية المحتوى الذي ينتجونه. نشير إلى هذه القدرة كتشخيص الذاتي. بناء على هذا النتيجة، نقترح خوارزمية فك تشفير ذلك، بالنظر إلى وصف نصي فقط للسلوك غير المرغوب فيه، يقلل من احتمال إنتاج نموذج لغة ينتج نصا مشكلة. نشير إلى هذا النهج كدخل ذاتي. لا يعتمد الدخل الذاتي على قوائم Word يدويا يدويا، ولا يتطلب الأمر أي بيانات تدريبية أو تغييرات على معلمات النموذج. في حين أننا لا نقضاء بأي حال من الأحوال قضية نماذج اللغة التي تولد نص متحيز، فإننا نعتقد أن نهجنا خطوة مهمة في هذا الاتجاه
نقدم مجموعة بيانات جديدة لإعادة كتابة الأسئلة في سياق المحادثة (QRECC)، والتي تحتوي على محادثات 14 ألف مع أزواج من الإجابات السؤال 80k.تتمثل المهمة في QRECC في العثور على إجابات على أسئلة المحادثة داخل مجموعة من صفحات الويب 10 أمتار (تقسيم إلى 54 متر ا مربعا).قد يتم توزيع إجابات على الأسئلة الموجودة في نفس المحادثة عبر العديد من صفحات الويب.توفر QRECC التعليقات التوضيحية التي تسمح لنا بتدريب وتقييم المهارات الفرعية الفردية من إعادة كتابة السؤال، واسترجاع المرور وفهم القراءة المطلوبة لمهمة الإجابة على مسألة المحادثة نهاية إلى نهاية.نبلغ عن فعالية نهج خط الأساس القوي الذي يجمع بين النموذج الحديثة لإعادة كتابة الأسئلة والنماذج التنافسية لقضاء ضمان الجودة المفتوحة.حددت نتائجنا أول خط أساسي ل DataSet QRECC مع F1 من 19.10، مقارنة بمضابط العلوي البشري 75.45، مما يدل على صعوبة الإعداد وغرفة كبيرة للتحسين.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا