في هذه الورقة، ندرس استخدام النماذج اللغوية المدربة مسبقا لتمكين توليد لغة البندقية القليلة (NLG) في أنظمة الحوار الموجهة نحو المهام. نقدم نظاما يتكون من التدريب الذاتي التكراري وإطار قالب صغير قابل للتوسيع يتم تخصيص بيانات الإدخال المهيكلة في نص شبه طبيعي للاستفادة الكاملة من نماذج اللغة المدربة مسبقا. نحن نقارن تمثيلات Var Ious لإدخال ونماذج NLG وإخراجها وإظهار أن تحويل المدخلات والمخرجات لتكون مشابهة لما شابه نموذج اللغة من قبل أثناء التدريب المسبق يحسن أداء الطراز القليل من الطرازات. نظظ أن Mod-Els العصبي يمكن تدريبها على أساس عدد قليل من الأمثلة المشروحة مع توفير الدقة العالية، وخفضت إلى حد كبير متطلبات الموارد الخاصة بوقوف مجال جديد أو لغة. هذا مستوى كفاءة البيانات يزيل الحاجة إلى جمع بيانات الحشد مما أدى إلى جودة أعلى جودة مشروح من قبل اللغويين الخبراء. بالإضافة إلى ذلك، ستحسن عمليات صيانة النموذج والتصحيح في هذا الإعداد القليل من الرصاص. أخيرا، نستكشف تقطير واستخدام نظام التخزين المؤقت لإرضاء متطلبات الكمون لأنظمة العالم الحقيقي.
In this paper, we study the utilization of pre-trained language models to enable few-shotNatural Language Generation (NLG) in task-oriented dialog systems. We introduce a system consisting of iterative self-training and an extensible mini-template framework that textualizes the structured input data into semi-natural text to fully take advantage of pre-trained language models. We compare var-ious representations of NLG models' input and output and show that transforming the input and output to be similar to what the language model has seen before during pre-training improves the model's few-shot performance substantially. We show that neural mod-els can be trained with as few as 300 annotated examples while providing high fidelity, considerably lowering the resource requirements for standing up a new domain or language.This level of data efficiency removes the need for crowd-sourced data collection resulting in higher quality data annotated by expert linguists. In addition, model maintenance and debugging processes will improve in this few-shot setting. Finally, we explore distillation and using a caching system to satisfy latency requirements of real-world systems.
المراجع المستخدمة
https://aclanthology.org/
إن توفير نماذج اللغة المحددة مسبقا مع أوصاف مهمة بسيطة في اللغة الطبيعية تمكنهم من حل بعض المهام بطريقة غير منشأة بالكامل. علاوة على ذلك، عند دمج التعلم المنتظم من الأمثلة، فإن هذه الفكرة تنتج نتائج قليلة رائعة لمجموعة واسعة من مهام تصنيف النص. كما أ
أظهرت نماذج اللغة للأغراض العامة قدرات مثيرة للإعجاب، وأداء على قدم المساواة مع النهج الحديثة على مجموعة من مهام ومعايير معالجة اللغة الطبيعية المصب (NLP) عند استنتاج التعليمات من الأمثلة القليلة للغاية.هنا، نقيم المهارات متعددة اللغات في نماذج GPT و
عند التحجيم إلى مئات مليارات مليارات المعلمات، فإن نماذج اللغة المحددة مسبقا مثل GPT-3 (Brown et al.، 2020) تحقق أداءا ملحوظا قليلا.ومع ذلك، فإن كميات هائلة من الحساب مطلوبة للتدريب وتطبيق هذه النماذج الكبيرة، مما أدى إلى بصمة كبيرة على الكربون وجعل
يشكل جيل النص المخصب المعرفي تحديات فريدة من نوعها في النمذجة والتعلم، مما يدفع البحوث النشطة في العديد من الاتجاهات الأساسية، بدءا من النمذجة المتكاملة للتمثيل العصبي والمعلومات الرمزية في الهياكل التسلسلية / الهرمية / الهرمية، والتعلم دون إشراف مبا
ينشأ التعلم القليل من الرصاص في سيناريوهات عملية مهمة، كما هو الحال عندما يحتاج نظام فهم اللغة الطبيعية إلى تعلم ملصقات دلالية جديدة للنشاط الناشئ والموارد النادر. في هذه الورقة، نستكشف الأساليب القائمة على استرجاع مهام تعبئة النوايا وملء الفتحات في