تصف هذه الورقة النموذج المدمج للمهمة المشتركة SIGTYP 2021 التي تهدف إلى تحديد 18 لغة مختلفة عن تسجيلات الكلام.يتم تحويل معاملات CEPSTRAL Mel-تردد Mel المستمدة من الملفات الصوتية إلى طفرات، ثم تغذيها بعد ذلك في بنية CNN المستند إلى 50.حصل النموذج النهائي على التحقق من الصحة واختبار بدلة 0.73 و 0.53، على التوالي.
This paper describes the model built for the SIGTYP 2021 Shared Task aimed at identifying 18 typologically different languages from speech recordings. Mel-frequency cepstral coefficients derived from audio files are transformed into spectrograms, which are then fed into a ResNet-50-based CNN architecture. The final model achieved validation and test accuracies of 0.73 and 0.53, respectively.
المراجع المستخدمة
https://aclanthology.org/
توضح هذه المذكرة إرسال NTR-TSU المهمة المشتركة SIGTYP 2021 بشأن التنبؤ معرفات اللغة من الكلام.تعد تحديد اللغة المنطوقة (غطاء) خطوة مهمة في خط أنابيب نظام التعرف الآلي متعدد اللغات (ASR).بالنسبة للعديد من اللغات المنخفضة واللغات المهددة بالانقراض، قد
تعد خلط التعليمات البرمجية (CM) ظاهرة ملحوظة في كثير من الأحيان تستخدم لغات متعددة في الكلام أو الجملة. لا توجد قيود نحوية صارمة لاحظت في خلط التعليمات البرمجية، وتتألف من أشكال الإملاء غير القياسية. إن التعقيد اللغوي الناتج عن العوامل المذكورة أعلاه
يعد تحليل الإطار الدلالي مهمة تحليل دلالية تعتمد على Framenet التي تلقت اهتماما كبيرا مؤخرا.تتضمن المهمة عادة ثلاث مجموعات فرعية بالتتابع: (1) التعرف المستهدف، (2) تصنيف الإطار و (3) وصف الدور الدليمي.ترتبط المهارات الفرعية الثلاثة ارتباطا وثيقا أثنا
يمكن أن تخفف المعلومات الدقيقة من حدود الكلمات مشكلة الغموض المعجمي لتحسين أداء مهام معالجة اللغة الطبيعية (NLP). وبالتالي، فإن تجزئة الكلمات الصينية (CWS) مهمة أساسية في NLP. نظرا لتطوير نماذج اللغة المدربة مسبقا (PLM)، فإن المعرفة المدربة مسبقا يمك
بسبب شعبية خدمات مساعد الحوار الذكي، أصبح التعرف على عاطفي الكلام أكثر وأكثر أهمية.في التواصل بين البشر والآلات، يمكن للتعرف على العاطفة وتحليل العاطفة تعزيز التفاعل بين الآلات والبشر.تستخدم هذه الدراسة نموذج CNN + LSTM لتنفيذ معالجة العاطفة الكلام (