ترغب بنشر مسار تعليمي؟ اضغط هنا

ضغط نموذج لتكييف المجال من خلال تقدير التأثير السببية

Model Compression for Domain Adaptation through Causal Effect Estimation

207   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما تعتمد تحسين التحسينات الأخيرة في الجودة التنبؤية لأنظمة معالجة اللغة الطبيعية على زيادة كبيرة في عدد المعلمات النموذجية. وقد أدى ذلك إلى محاولات مختلفة لضغط هذه النماذج، لكن الطرق الحالية لم تعتبر الاختلافات في القوة التنبؤية للمكونات النموذجية المختلفة أو في تعميم النماذج المضغوطة. لفهم العلاقة بين ضغط النموذج وتعميم خارج التوزيع، نحدد مهمة ضغط نماذج تمثيل اللغة بحيث تؤدي الأفضل في إعداد تكيف المجال. نختار معالجة هذه المشكلة من منظور سببي، مما يحاول تقدير متوسط ​​تأثير العلاج (أكل) من مكون نموذجي، مثل طبقة واحدة، في تنبؤات النموذج. يولد مخطط ضغط النموذج الموجه المقترح الخاص بنا (AMOC)، العديد من المرشحين النموذجيين، يختلف عن طريق المكونات النموذجية التي تمت إزالتها. ثم، نقوم بتحديد أفضل المرشح من خلال نموذج الانحدار الشديد الذي يستخدم أكلت للتنبؤ بالأداء المتوقع على المجال المستهدف. تفوق AMOC على خطوط أساسية قوية على العشرات من أزواج المجال عبر ثلاثة مهام تمييز نصية وتسلسل



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا لكبير، والانفجار النموذجي. لمعالجة هذه المشكلات الثلاثة، نقترح طريقة للتقسيم والتغلب عليها "والتي تعتمد على أهمية الخلايا العصبية أو المعلمات لنموذج الترجمة. في هذه الطريقة، نقوم أولا بإزالة النموذج ويحافظ على الخلايا العصبية أو المعلمات المهمة فقط، مما يجعلها مسؤولة عن كل من المجال العام والترجمة داخل المجال. ثم علينا مزيد من تدريب النموذج المعاني الذي يشرف عليه النموذج الكامل الأصلي مع تقطير المعرفة. أخيرا، نوسع النموذج إلى الحجم الأصلي وضبط المعلمات المضافة للترجمة داخل المجال. أجرينا تجارب على أزواج ومجالات مختلفة للغة والنتائج تظهر أن طريقتنا يمكن أن تحقق تحسينات كبيرة مقارنة بالعديد من خطوط الأساس القوية.
نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف قدان شرائح طويلة من أجل حماية السرية، نجد أن جودة NMT يمكن أن تستفيد كثيرا من هذا التكيف، وأنه يمكن الحصول على مزيد من المكاسب مع تقنية علامات بسيطة.
ينقل التعرف على الكيان المسمى عبر المجال (NER) المعرفة NER من مجالات الموارد العالية إلى المجال المستهدف منخفض الموارد. نظرا للموارد المحدودة المسمى وانعكاف المجال، تعد Nor Cross-Domain مهمة صعبة. لمعالجة هذه التحديات، نقترح نهج تقطير المعرفة في مجال التكيف في مجال التدريجي - PDALN. أنه يحقق إمكانية التكيف المجال المتفوق من خلال توظيف ثلاثة مكونات: (1) تقنيات تكبير البيانات التكيفية، والتي تخفف فجوة عبر المجال وتسمية مضيفية في وقت واحد؛ (2) ميزات ثابتة نطاق المجال متعدد المستويات، مشتقة من نهج MMD متعدد الحبيبات (الحد الأقصى للتناقض المتوسط)، لتمكين نقل المعرفة عبر المجالات؛ (3) مخطط KD المتقدمة، والذي يتيح تدريجيا نماذج اللغة المدربة مسبقا مسبقا لأداء تكيف المجال. تشير تجارب واسعة على أربعة معايير إلى أن PDALN يمكن أن تتكيف بشكل فعال مجالات الموارد العالية إلى المجالات المستهدفة من الموارد المنخفضة، حتى لو كانت متنوعة من حيث الأنماط والكتابة. تشير المقارنة مع خطوط الأساس الأخرى إلى أداء الدولة الواحد لدليلن.
أسفرت صعود النماذج اللغوية المدربة مسبقا تقدما كبيرا في الغالبية العظمى من مهام معالجة اللغة الطبيعية (NLP). ومع ذلك، يمكن أن يكون النهج العام باتجاه الإجراء المسبق للتدريب بطبيعة الحال في بعض الحالات. بشكل خاص، قم بضبط نموذج لغة مدرب مسبقا في مجال ا لمصدر ثم تطبيقه على نطاق مستهدف مختلف، يؤدي إلى انخفاض أداء حاد من المصنف النهائي للعديد من أزواج المجال المستهدف المصدر. علاوة على ذلك، في بعض مهام NLP، تختلف فئات الإخراج بشكل كبير بين المجالات، مما يجعل التكيف أكثر تحديا. هذا، على سبيل المثال، يحدث في مهمة استخراج الجانب، حيث قد تكون جوانب اهتمام الاستعراضات، على سبيل المثال، المطاعم أو الأجهزة الإلكترونية مختلفة للغاية. تقدم هذه الورقة مخططا جديدا للضبط في بيرت، والتي تهدف إلى معالجة التحديات المذكورة أعلاه. نحن نسمي هذا المخطط Dilbert: تعلم المجال الثابتة مع Bert، وتخصيصه لاستخراج الجانب في إعداد تكيف المجال غير المقترح. يسخر Dilbert المعلومات الفئوية لكل من المصدر والمجالات المستهدفة لتوجيه عملية التدريب المسبق نحو تمثيل ثنائي النطاق والفئة، مما يغلق الفجوة بين المجالات. نظهر أن Dilbert يعطي تحسينات كبيرة على خطوط الأساس الحديثة أثناء استخدام جزء صغير من البيانات غير المسبقة، لا سيما في إعدادات تكيف مجال أكثر تحديا.
تحتاج أنظمة الإنتاج NMT عادة إلى خدمة مجالات المتخصصة التي لا تغطيها كوربيا كبيرة ومتاحة بسهولة بشكل مناسب.ونتيجة لذلك، غالبا ما يكون الممارسون نماذج غرضا عاما نماذج عامة على كل من المجالات التي يلبيها منظمةها.ومع ذلك، يمكن أن يصبح عدد المجالات كبيرا ، مما يتجمع مع عدد اللغات التي تحتاج إلى خدمة يمكن أن تؤدي إلى وضع أسطول غير قابل للحل من النماذج والمحافظة عليها.نقترح علامات متعددة الأبعاد، وهي طريقة لضبط نموذج NMT واحد على عدة مجالات في وقت واحد، وبالتالي تقليل تكاليف التطوير والصيانة بشكل كبير.نحن ندير تجارب حيث يقارن نموذج واحد MDT بشكل إيجابي لمجموعة من نماذج SOTA متخصصة، حتى عند تقييمها على المجال كانت تلك الأساس التي تم ضبطها بشكل جيد.إلى جانب بلو، نبلغ عن نتائج التقييم البشري.تعيش نماذج MDT الآن في Booking.com، مما يؤدي إلى تشغيل محرك MT الذي يخدم ملايين الترجمات يوميا في أكثر من 40 لغة مختلفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا