ترغب بنشر مسار تعليمي؟ اضغط هنا

احتجاج منظم تحت الإشراف الذاتي لمعرفة الرسم البياني المعرفة المنطقية

Structured Self-Supervised Pretraining for Commonsense Knowledge Graph Completion

306   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الملخص لتطوير تطبيقات NLP المتطرفة المنطقية، وهو رسم بياني معرفي شامل ودقيق للعموم (CKG).إنها تستغرق وقتا طويلا لإنشاء CKGS يدويا والعديد من جهود البحثية التي تم تخصيصها للبناء التلقائي CKGS.تركز النهج السابقة على توليد المفاهيم التي لديها علاقات مباشرة واضحة مع المفاهيم القائمة وتفتقر إلى القدرة على توليد مفاهيم غير واضحة.في هذا العمل، نهدف إلى سد هذه الفجوة.نقترح الإطار العام لإحاطاء بيئة الرسم البياني إلى مسارات يرفع هياكل مرتفعة في CKGS لالتقاط علاقات عالية الجودة بين المفاهيم.نحن إنشاء هذا الإطار العام إلى أربع حالات خاصة: المسار الطويل، المسار إلى المسار، جهاز التوجيه، ورأس الرسم البياني - مسار العقدة.تجارب على مجموعة بيانات اثنين تثبت فعالية أساليبنا.سيتم إصدار الرمز عبر مستودع GitHub العام.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت الرسم البياني المعرفي، الذي يمثل الكيانات والعلاقات في الرسوم البيانية المعرفة مع ناقلات عالية الأبعاد، تقدما كبيرا في التنبؤ بالربط. استكشف المزيد من الباحثين القدرات التمثيلية للنماذج في السنوات الأخيرة. وهذا هو، يحققون في نماذج تمثيلية أفضل ل تناسب التناظر / مضادات التنسيق والعلاقات الجمع. تعد نماذج التضمين الحالية أكثر ميلا لاستخدام ناقل متطابق لنفس الكيان في ثلاثة أضعاف لقياس الأداء المطابق. إن الملاحظة التي تقيس عقلانية ثلاثية محددة تعني مقارنة درجة المطابقة من السمات المحددة المرتبطة بالعلاقات معروفة جيدا. مستوحاة من هذه الحقيقة، تقوم هذه الورقة بتصميم المرشح الدلالي بناء على العلاقات (SFBR) لاستخراج الصفات المطلوبة للكيانات. ثم يتم مقارنة عقلانية ثلاثية تحت هذه السمات المستخرجة من خلال نماذج التضمين التقليدية. يمكن إضافة وحدة تصفية الدلالية إلى معظم نماذج التحلل الهندسية والشعور مع الحد الأدنى من الذاكرة الإضافية. تبين التجارب في مجموعات البيانات القياسية أن المرشح الدلالي القائم على العلاقات يمكن أن تقمع تأثير أبعاد السمات الأخرى وتحسين أداء تنبؤ الارتباط. حققت نماذج التحلل مع SFBR أحدث من الفن.
تناقش ورقة الاستقصاء / المركبة هذه الطرق لتحسين تغطية الموارد مثل WordNet.RAPP تقدر الارتباطات، RHO، بين إحصائيات كوربوس ومعايير الهاجولية.RHO يحسن مع الكمية (حجم كوربوس) والجودة (التوازن).1M الكلمات تكفي لتقديرات بسيطة (ترددات غير منغرام)، ولكن 100x على الأقل مطلوب لتقديرات جيدة للجمعيات والمواد المدمجة.نظرا مثل هذه التقديرات، فإن تغطية Wordnet رائعة.تم تطوير WordNET في SEMCOR، عينة صغيرة (كلمات 200K) من كوربوس البني.محاولات إكمال الرسم البياني المعرفي (KGC) تعلم الروابط المفقودة من مجموعات فرعية من مجموعات فرعية.لكن تقديرات Rapp للأحجام تشير إلى أنها ستكون أكثر ربحية لجمع المزيد من البيانات من استنتاج المعلومات المفقودة التي ليست موجودة.
تم إحراك المصالح المتزايدة في أنظمة الموافقة على المحادثة (CRS)، والتي تستكشف تفضيل المستخدم من خلال تفاعلات المحادثة من أجل تقديم توصية مناسبة. ومع ذلك، لا يزال هناك نقص في القدرة في CRS الحالية إلى (1) اجتياز مسارات التفكير المتعددة على المعرفة الأ ساسية لإدخال العناصر والسمات ذات الصلة، و (2) ترتيب كيانات مختارة بشكل مناسب بموجب نود النظام الحالي للسيطرة على جيل الاستجابة. لمعالجة هذه المشكلات، نقترح Walker CR-Walker في هذه الورقة، وهو نموذج يقوم بتنفيذ التفكير منظم في الأشجار في رسم بياني للمعرفة، ويولد أعمال حوار إعلامية لتوجيه توليد اللغة. ينظر المخطط الفريد من المنطق المنظم في الأشجار إلى الكيان اجتاز كل قفزة كجزء من أعمال الحوار لتسهيل توليد اللغة، والذي يربط كيف يتم اختيار الكيانات والأعرب عنها. تظهر التقييمات التلقائية والبشرية أن CR-Walker يمكن أن يصل إلى توصية أكثر دقة، وتوليد استجابات أكثر إعلامية وجذابة.
تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event ke Eventke المحسن للحدث. على وجه التحديد، نظرا لل KG الأصلية، فإننا ندمج أول عقود حدث من خلال بناء شبكة غير متجانسة، حيث يتم توزيع العقد الكيانية وعقد الحدث على جانبي الشبكة بين روابط الوسيطة في الحدث. ثم نستخدم علاقات كيان الكيان من الروابط الزمنية KG والأحداث الزمنية الأصلية إلى الكيان والكيان الداخلي والوقت على التوالي. نقوم بتصميم طريقة تمرير رسائل مفيدة وتستند إلى الرواية، والتي يتم إجراؤها على كيان كيان وكيان الحدث وحدث الأحداث لفيد معلومات الحدث في AGBeddings KG. تظهر النتائج التجريبية على مجموعات البيانات في العالم الحقيقي أن الأحداث يمكن أن تحسن إلى حد كبير جودة AGEDDINGS KG على مهام متعددة المصب.
تمت دراسة Graph Basic Knowledge (SKG) (SKGE) بشكل مكثف في السنوات الماضية.في الآونة الأخيرة، ظهرت شركة الرسم البياني للمعرفة (TKG) (TKGE).في هذه الورقة، نقترح إطار عمل تضمين الحقائق الزمنية العودية (RTFE) لإجراء عمليات زراعة النماذج إلى TKGS وتعزيز أ داء نماذج TKGE الحالية لإكمال TKG.تختلف عن العمل السابق الذي يتجاهل استمرارية دول TKG في التطور الزمني، نتعامل مع تسلسل الرسوم البيانية كسلسلة ماركوف، والتي تحولات من الدولة السابقة إلى الحالة التالية.RTFE يأخذ Skge لتهيئة embedings of tkg.ثم تعقب Strefly State Tremition من TKG عن طريق تمرير المعلمات / ميزات محدثة بين الطوابع الزمنية.على وجه التحديد، في كل زمني، نقيب انتقال الدولة باعتباره عملية تحديث التدرج.نظرا لأن RTFE يتعلم كل طابع زمني متكرر، فيمكنه العبور بشكل طبيعي إلى الطوابع الزمنية المستقبلية.تجارب في خمس مجموعات بيانات TKG تظهر فعالية RTFE.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا