مجردة المقاييس المستخدمة بشكل أساسي لتقييم نماذج توليد اللغة الطبيعية (NLG)، مثل Bleu أو Meteor، تفشل في تقديم معلومات حول تأثير العوامل اللغوية الأداء. التركيز على تحقيق السطح (SR)، ومهمة تحويل شجرة تبعية غير مرتبة في جملة رائعة، نقترح إطارا لتحليل الأخطاء الذي يسمح بتحديد ميزات الإدخال تؤثر على نتائج النماذج. يتكون هذا الإطار من عنصرين رئيسيين: (1) تحليلات الارتباط بين مجموعة واسعة من المقاييس النحوية ومقاييس الأداء القياسية و (2) مجموعة من التقنيات لتحديد البنيات النحوية تلقائيا والتي غالبا ما تحدث مع درجات أداء منخفضة. نوضح مزايا إطار الإطار الخاص بنا عن طريق إجراء تحليل الأخطاء في نتائج 174 يدير النظام المقدم إلى المهام المشتركة ل SR متعددة اللغات؛ نظهر أن دقة حافة التبعية ترتبط مع المقاييس التلقائية وبالتالي توفير أساس أكثر قابلية للتفسير للتقييم؛ ونقترح الطرق التي يمكن بها استخدام إطار عملنا لتحسين النماذج والبيانات. يتوفر الإطار في شكل مجموعة أدوات يمكن استخدامها على حد سواء من خلال منظمي الحملة لتوفير ملاحظات مفصلة، من التفسير اللغوي على حالة الفن في مجال الإرسال المتعدد اللغات، والباحثين الفرديين لتحسين النماذج ومجموعات البيانات
Abstract The metrics standardly used to evaluate Natural Language Generation (NLG) models, such as BLEU or METEOR, fail to provide information on which linguistic factors impact performance. Focusing on Surface Realization (SR), the task of converting an unordered dependency tree into a well-formed sentence, we propose a framework for error analysis which permits identifying which features of the input affect the models' results. This framework consists of two main components: (i) correlation analyses between a wide range of syntactic metrics and standard performance metrics and (ii) a set of techniques to automatically identify syntactic constructs that often co-occur with low performance scores. We demonstrate the advantages of our framework by performing error analysis on the results of 174 system runs submitted to the Multilingual SR shared tasks; we show that dependency edge accuracy correlate with automatic metrics thereby providing a more interpretable basis for evaluation; and we suggest ways in which our framework could be used to improve models and data. The framework is available in the form of a toolkit which can be used both by campaign organizers to provide detailed, linguistically interpretable feedback on the state of the art in multilingual SR, and by individual researchers to improve models and datasets.1
المراجع المستخدمة
https://aclanthology.org/
على الرغم من أن الشبكات العصبية العميقة تعمل على نطاق واسع وأثبت فعاليتها في مهام تحليل المعنويات، إلا أنها تظل تحديا للمطورين النموذجيين لتقييم نماذجهم من أجل التنبؤات الخاطئة التي قد تكون موجودة قبل النشر.بمجرد النشر، يمكن أن يكون من الصعب تحديد ال
تقليديا، تم حل مشاكل نقل مستوى الأحرف مع طرازات الحالة المحدودة المصممة لتشفير المعرفة الهيكلية واللغوية بالعملية الأساسية، في حين أن النهج الحديثة تعتمد على قوة ومرونة نماذج التسلسل إلى التسلسل مع الاهتمام.التركيز على سيناريو التعلم الأقل استكشاف غي
تفتقر الأبحاث الحديثة باستخدام نماذج اللغة المدربة مسبقا لمهمة تلخيص المستندات متعددة الوثائق إلى تحقيق عميق في الحالات الخاطئة المحتملة وتطبيقها المحتمل على اللغات الأخرى.في هذا العمل، نطبق نموذج لغة مدرب مسبقا (BART) لمهمة تلخيص متعدد الوثائق (MDS)
إن تحميل انحرافات تكلفة المواد المباشرة بصورته الراهنة لا يوفر معلومات
مناسبة عن الموقف التنافسي للوحدة الاقتصادية من الناحية التكاليفية, و لا يشجع على التحسين المستمر, و بالتالي لم يعد مناسباً أو كافياً لبيئة التصنيع الحديثة. لذلك يرى الباحث بأنه ي
آلة القراءة، هي إطار القراءة، إطار تحليل يأخذ نصا مؤيدا للنص الخام وإجراء ستة مهام NLP القياسية: Tokenization، وضع العلامات على نقاط البيع، التحليل المورفولوجي، الليمات، تحليل التبعية وتجزئة الجملة.تم تصميمه عند التحليل القائم على الانتقال، ويسمح بتن