جعلت النماذج المدربة مسبقا مثل تمثيل التشفير ثنائي الاتجاه من المحولات (بيرت)، قفزة كبيرة إلى الأمام في مهام معالجة اللغة الطبيعية (NLP).ومع ذلك، لا تزال هناك بعض أوجه القصور في مهمة نمذجة اللغة المعقدة (MLM) التي يؤديها هذه النماذج.في هذه الورقة، نقدم أول رسم بياني متعدد الأنواع بما في ذلك أنواع مختلفة من العلاقات بين الكلمات.بعد ذلك، نقترح النموذج متعدد الرسوم البياني المعزز (MG-BERT) نموذجا يعتمد على بيرتف.تضمين MG-BERT تضمين الرموز الرموز أثناء الاستفادة من الرسم البياني الثابت متعدد الرسوم البيانية التي تحتوي على حوادث مشتركة عالمية في نصوص النص بجانب الحقائق العالمية الحقيقية العالمية حول الكلمات الموجودة في رسوم المعرفة.يستخدم النموذج المقترح أيضا رسم بياني جملة ديناميكية لالتقاط السياق المحلي بشكل فعال.تظهر النتائج التجريبية أن طرازنا يمكن أن يعزز بشكل كبير الأداء في مهمة الامتيازات.
Pre-trained models like Bidirectional Encoder Representations from Transformers (BERT), have recently made a big leap forward in Natural Language Processing (NLP) tasks. However, there are still some shortcomings in the Masked Language Modeling (MLM) task performed by these models. In this paper, we first introduce a multi-graph including different types of relations between words. Then, we propose Multi-Graph augmented BERT (MG-BERT) model that is based on BERT. MG-BERT embeds tokens while taking advantage of a static multi-graph containing global word co-occurrences in the text corpus beside global real-world facts about words in knowledge graphs. The proposed model also employs a dynamic sentence graph to capture local context effectively. Experimental results demonstrate that our model can considerably enhance the performance in the MLM task.
المراجع المستخدمة
https://aclanthology.org/
نحن نقدم Graformer، وهي عبارة عن بنية ترميز ترميز ترميز محول المبالية على أساس الرسوم البيانية إلى النص.مع انتباهنا عن الرسوم البيانية لروايتنا، يعتمد ترميز العقدة على جميع العقد في الرسم البياني للإدخال - ليس فقط الجيران المباشر - يسهل اكتشاف أنماط
تفسير محتمل للأداء المثير للإعجاب في ما قبل التدريب اللغوي المصنوع (MLM) هو أن هذه النماذج تعلمت أن تمثل الهياكل النحوية السائدة في خطوط أنابيب NLP الكلاسيكية. في هذه الورقة، نقترح شرحا مختلفا: تنجح MLMS على مهام المصب بالكامل تقريبا بسبب قدرتها على
تقدم هذه الورقة أول دراسة حول استخدام نماذج اللغة المدربة مسبقا على نطاق واسع للجيل الآلي من الرسم البياني الصخم على مستوى الحدث للحصول على مستند. على الرغم من النجاح الهائل لأساليب ما قبل التدريب العصبي في مهام NLP، لم يتم استكشاف إمكاناتها للمنطق ا
بالنسبة لأي موقع على شبكة الإنترنت للتجارة الإلكترونية، فهذا مشكلة غير خيالية تبني الإعلانات الدائمة التي تجذب المتسوقين.من الصعب اجتياز شريط الجودة الإبداعي للموقع، خاصة على نطاق واسع.وبالتالي نقترح حل برنامجي لتوليد عناوين إعلانات المنتج باستخدام م
النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي