ترغب بنشر مسار تعليمي؟ اضغط هنا

إخباري وهمية الكشف عن البرتغالية مع التعلم العميق

Fake News Detection for Portuguese with Deep Learning

325   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ألقى النمو الأسي للإنترنت والوسائط الاجتماعية في العقد الماضي الطريق إلى زيادة نشر المعلومات الخاطئة أو المضللة. منذ الانتخابات الرئاسية الأمريكية لعام 2016، أصبحت مصطلح أخبار وهمية "أصبحت شعبية متزايدة وقد تلقت هذه الظاهرة اهتماما أكبر. في السنوات الماضية، تم إنشاء العديد من وكالات فحص الحقائق، ولكن بسبب عدد كبير من الوظائف اليومية على وسائل التواصل الاجتماعي، والفحص اليدوي غير كاف. حاليا، هناك حاجة ملحة لأدوات الكشف عن الأخبار التلقائي، إما لمساعدة قوائم الداما اليدوية أو التشغيل كأدوات قائمة بذاتها. هناك العديد من المشاريع جارية حول هذا الموضوع، لكن معظمهم يركزون على اللغة الإنجليزية. تناقش ورقة البحث في البحث هذه توظيف أساليب التعلم العميق، وتطوير أداة، للكشف عن الأخبار الخاطئة باللغة البرتغالية. كخطوة أولى، سنقوم بمقارنة الهيغات الراسخة التي تم اختبارها بلغات أخرى وتحليل أدائها على بياناتنا البرتغالية. بناء على النتائج الأولية لهذه المصنفات، يجب أن نختار نموذجا للتعلم العميق أو الجمع بين العديد من نماذج التعلم العميق التي تعاني من وعد لتعزيز أداء نظام الكشف عن الأخبار المزيف.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعتبر البيانات التي يتم إساءة فهمها عن قصد (أو التلاعب) باهتمام كبير للباحثين والحكومة والأمن والنظم المالية. وفقا لأدب الخداع، هناك إشارات موثوقة للكشف عن الخداع والاعتقاد بأن الكذابين يعطون العظة التي قد تشير إلى أن خداعها قريب عالمي. لذلك، بالنظر إلى أن الإجراءات الخادعة تتطلب التطور المعرفي المتقدمة التي لا تتطلب الصدق ببساطة، وكذلك الآليات المعرفية للناس توجيهات واعدة للكشف عن الخداع، في هذه الدكتوراه. البحث المستمر، نقترح فحص أنماط هيكل الخطاب في كورسيا الأخبار الخادعة متعددة اللغات باستخدام إطار نظرية الهيكل البوليكي. بالنظر إلى أن عملنا هو أول من استغلال استراتيجيات إعلانات متعددة اللغات للكشف عن الأخبار المزيفة، يفتقر مجتمع البحث حاليا إلى كورسا المزدحمة الخادعة متعددة اللغات. تبعا لذلك، تصف هذه الورقة التقدم الحالي في هذه الأطروحة، بما في ذلك (1) بناء أول لجنة خادعة متعددة اللغات، مشروح من قبل المتخصصين وفقا لإطار نظرية الهيكل البوليكي، و (2) إدخال اثنين من علاقات بلاطية جديدة : التدخل والحتمية، التي نفترض أن نكون ذات صلة بمهمة الكشف عن الأخبار المزيفة.
مع استمرار العالم في محاربة جائحة CovID-19، فإنه يقاتل في وقت واحد من نقص الدم "- وهو طوفان من تضليل وانتشار نظريات المؤامرة المؤدية إلى تهديدات صحية وشعبة المجتمع. لمكافحة هذا المعكرية، هناك حاجة ملحة لمجموعات البيانات القياسية التي يمكن أن تساعد ال باحثين على تطوير وتقييم النماذج الموجهة نحو الكشف التلقائي عن التضليل. في حين أن هناك جهودا متزايدة لإنشاء مجموعات بيانات قياسية كافية ومفتوحة للمصدر للغة الإنجليزية، فإن الموارد القابلة للمقارنة غير متاحة تقريبا بالنسبة للألمانية، مما يترك البحث في اللغة الألمانية متخلفة بشكل كبير. في هذه الورقة، نقدم DataSet المعيار الجديد Fang-Covid يتكون من 28،056 مواد إخبارية ألمانية حقيقية و 13،186 مرتبطة بمعائق CovID-19 وكذلك بيانات عن انتشارها على Twitter. علاوة على ذلك، نقترح نموذجا قابل للتفسير القائم على السياق والاجتماعي للكشف عن الأخبار المزيفة، ومقارنة أدائه إلى النماذج والأداء الأسود الميزة لتقييم الأهمية النسبية للميزات القابلة للتفسير البشرية في التمييز بين الأخبار المزيفة من الأخبار الأصلية وبعد
مكنت نماذج اللغة العصبية العميقة مثل بيرت التطورات الأخيرة في العديد من مهام معالجة اللغة الطبيعية. ومع ذلك، نظرا للجهد والتكلفة الحاسوبية المشاركة في التدريب المسبق لها، يتم إدخال هذه النماذج عادة فقط لعدد صغير من لغات الموارد عالية الوزن مثل اللغة الإنجليزية. في حين تتوفر نماذج متعددة اللغات التي تغطي أعدادا كبيرة من اللغات، فإن العمل الحديث يشير إلى أن التدريب أحادي الأحادي يمكن أن ينتج عن نماذج أفضل، وفهمنا للمفاضرة بين التدريب الأحادي وغير اللغوي غير مكتمل. في هذه الورقة، نقدم خط أنابيب بسيطة وأتمتة بالكامل لإنشاء نماذج بيرت الخاصة باللغة من البيانات من بيانات ويكيبيديا وإدخال 42 من هذه النماذج الجديدة، والأكثر من اللازم لغات حتى الآن تفتقر إلى نماذج اللغة العصبية العميقة المخصصة. نقوم بتقييم مزايا هذه النماذج باستخدام اختبارات Cloze و Autify Parser على بيانات التبعيات العالمية، والأداء المتناقض مع النتائج باستخدام طراز Bert (Mbert) متعدد اللغات. نجد أن نماذج WikiBert المقدمة حديثا تفوقت Mbert في اختبارات Cloze لجميع اللغات تقريبا، وأن uDify باستخدام نماذج Wikibert تفوق المحلل باستخدام Mbert في المتوسط، مع توضح الطرز الخاصة باللغة تحسين أداء محسنة بشكل كبير لبعض اللغات، ولكن تحسين محدود أو تحسين انخفاض في الأداء للآخرين. تتوفر جميع الطرق والنماذج المقدمة في هذا العمل تحت التراخيص المفتوحة من https://github.com/turkunlp/wikibert.
تم عرض التعلم النشط للحد من متطلبات التوضيحية للعديد من مهام معالجة اللغة الطبيعية، بما في ذلك وضع العلامات الدلالية (SRL).تنطوي SRL على وسيطة وسيطة تمتد من أجل المحتمل أن يحتمل أن يتسرب المتعددة في جملة، مما يجعل من الصعب تجميع القرارات العديدة في د رجة واحدة لتحديد حالات جديدة للتعليق.في هذه الورقة، نطبق طريقتين للحصول على درجات تجميع عبر المسندات المتعددة من أجل اختيار جمل الاستعلام مع طريقتين تقدير اليقين النموذجي: استخدام مخرجات الشبكة العصبية واستخدام التعلم النشط في Bayesian في التسرب عن طريق الخلاف.قارنا هذه الأساليب بثلاثة أسماطية سلبية --- اختيار الجملة العشوائية، تحديد المستندات العشوائية بالكامل، واختيار الجمل مع معظم المتوقع --- وتحليل تأثير هذه الاستراتيجيات لديها على منحنى التعلم فيما يتعلق بتخفيض عدد المشروحالجمل والمسند لتحقيق الأداء العالي.
مراجعات العملاء مفيدة في توفير تجربة غير مباشرة من المنتج.غالبا ما يستخدم الناس الاستعراضات التي كتبها عملاء آخرون كمبدأ توجيهي قبل شراء منتج.هذا السلوك يدل على صحة الاستعراضات في منصات التجارة الإلكترونية.ومع ذلك، أصبحت مراجعات وهمية بشكل متزايد متا عب لكل من المستهلكين وأصحاب المنتجات.لمعالجة هذه المشكلة، نقترح عليك فقط تحتاج الذهب (يونغ)، وهي أداة تعدين معلومات أساسية للكشف عن مراجعات وهمية وتعزيز تقدير المستخدم.تظهر النتائج التجريبية لدينا الأداء البشري الفقراء على اكتشاف مراجعة وهمية، وقدرة المستخدم المحسنة بشكل كبير بالنظر إلى أدواتنا، والحاجة النهائية للحصول على اعتماد المستخدم على الأداة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا